EULER AND EXPONENTIAL ALGORITHM IN VISCOELASTIC ANALYSES OF LAMINATED GLASS

Jaroslav Schmidt, Alena Zemanová

Abstract


Laminated glass combines two remarkable materials: glass and a polymer ply. While glass is stiff and brittle, the polymer ply is a rate-dependent compliant material. Together, they form a material which keeps the aesthetic value of glass, and due to the polymer, no fragile collapse appears. The polymer ply exhibits time- and temperature-dependency, whereas glass suffers from brittle fracture, which makes the analysis difficult. In this article, a 2D sectional plane-stress model for the viscoelastic analysis of laminated glass is presented. This study presents one step in the development of a phase-field-based damage solver for laminated glass to select the optimal time-integration scheme for a quasistatic-analysis and later also for dynamics. The validation against experimental data is provided, and the model reduction is also discussed.

Keywords


Laminated glass, viscoelasticity, generalised Maxwell model, exponential algorithm, Euler method

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2336-5382 (Online)
Published by the Czech Technical University in Prague