LOCALIZATION ANALYSIS OF DAMAGE FOR ONE-DIMENSIONAL PERIDYNAMIC MODEL
DOI:
https://doi.org/10.14311/APP.2021.30.0047Keywords:
Damage, localization, nonlocal continuum, peridynamics.Abstract
Peridynamics is a recently developed extension of continuum mechanics, which replaces the traditional concept of stress by force interactions between material points at a finite distance. The peridynamic continuum is thus intrinsically nonlocal. In this contribution, a bond-based peridynamic model with elastic-brittle interactions is considered and the critical strain is defined for each bond as a function of its length. Various forms of length functions are employed to achieve a variety of macroscopic responses. A detailed study of three different localization mechanisms is performed for a one-dimensional periodic unit cell. Furthermore, a convergence study of the adopted finite element discretization of the peridynamic model is provided and an effective event-driven numerical algorithm is described.