APPLICATION OF PREDICTIVE COMBUSTION MODEL TO CI ICE BASED ON LES AND CHEMICAL KINETICS

Authors

  • Oldřich Vítek Czech Technical University in Prague, Department of Automotive, Combustion Engine and Railway Engineering, Technická 4, CZ-16607 Prague 6
  • Vít Doleček Czech Technical University in Prague, Department of Automotive, Combustion Engine and Railway Engineering, Technická 4, CZ-16607 Prague 6
  • Marcel Diviš Czech Technical University in Prague, Department of Automotive, Combustion Engine and Railway Engineering, Technická 4, CZ-16607 Prague 6
  • Jan Macek Czech Technical University in Prague, Department of Automotive, Combustion Engine and Railway Engineering, Technická 4, CZ-16607 Prague 6

Keywords:

LES, CFD, CHEMICAL KINETICS, COMPRESSION IGNITION, SIMULATION, NOX FORMATION, IGNITION DELAY

Abstract

The paper deals with 3-D CFD modeling of CI ICE while using LES approach combined with chemical kinetics. Detailed CFD model of single-cylinder research CI engine was built. As LES approach has high predictive ability, it needs limited calibration when compared with RANS. In this particular case, only LES spray sub-model was calibrated using dedicated data from ‘cold’ pressure vessel test rig. Another critical step when using LES approach is to have a correct computational mesh resolution. Global heat transfer scaling factor was fine-tuned as well. Sensitivity studies were carried out to make the final selection of these parameters. After that, 4 different engine operating points were calculated – these represent different load levels while there is a variation of EGR as well. Concerning applied chemistry, simple mechanism based on n-heptane containing 34 species and 64 reactions was used. Predicted data were compared versus measured/reference data representing average cycle. Good performance of applied simulation setup was stated – this mainly concerns the predictive ability in terms of rate of heat release and NOformation. Certain shortcomings were identified – they need addressing, which is planned as near-future steps.

Článek se zabývá 3-D CFD modelováním vznětového spalovacího motoru za použití LES přístupu v kombinaci s chemickou kinetikou. Byl vytvořen podrobný CFD model jednoválcového výzkumného vznětového motoru. Protože LES přístup vykazuje velkou prediktivní schopnost, nutnost kalibrace je nižší ve srovnání s RANS přístupem. V tomto konkrétním případě jen LES model paprsku paliva byl kalibrován s využitím dat ze „studené“ tlakové komory. Dalším kritickým krokem při použití LES je použití správné výpočetní sítě z hlediska jejího rozlišení. Také globální násobitel pro přestup tepla byl mírně doladěn. Pro finální výběr těchto parametrů byly provedeny citlivostní studie. Poté byly propočteny 4 různé pracovní body motoru – ty reprezentují různé úrovně zatížení s tím, že se mění i hodnota vnější recirkulace výfukových plynů. Co se týká použité chemie, byl použit jednoduchý mechanismus založený na n-heptanu, který obsahuje 34 složek a 64 reakcí. Vypočtená data byla porovnána s experimentálními/referenčními daty, která odpovídají průměrnému cyklu. Bylo konstatováno, že použitá konfigurace výpočtu vykazuje dobré parametry – to se týká hlavně schopnosti predikovat rychlost vývinu tepla a tvorbu NOx. Byly identifikovány určité nedostatky, které je nutné řešit, což je plánováno pro nejbližší budoucnost.


References

Vitek, O., Macek, J., Tatschl, R., Pavlovic, Z. et al., LES Simulation of Direct Injection SI-Engine In-Cylinder Flow, SAE Technical Paper 2012-01-0138, 2012, doi.org/10.4271/2012-01-0138

Tatschl, R., Bogensperger, M., Pavlovic, Z., Priesching, P. et al., LES Simulation of Flame Propagation in

a Direct-Injection SI-Engine to Identify the Causes of Cycle-to-Cycle Combustion Variations,

SAE Technical Paper 2013-01-1084, 2013,

doi.org/10.4271/2013-01-1084

Vítek, O., Macek, J., Pavlovic, Z., et al., Statistical

Analysis of Detailed 3-D CFD LES Simulations with Regard to CCV Modeling, Journal of Middle European Construction and Design of Cars, 14(1), pp. 1-16, 2016. doi:10.1515/mecdc-2016-0001

Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C. and Veynante D., Towards Large Eddy Simulation of Combustion in Spark Ignition Engines, Proceedings of the Combustion Institute, Vol. 31, No. 1, pp. 3059-3066, 2007.

Moureau, V., Barton, I., Angelberger, C., Poinsot, T., Towards Large Eddy Simulation in Internal-Combustion Engines: Simulation of a Compressed Tumble Flow,

SAE Technical Paper 2004-01-1995, 2004.

doi: 10.4271/2004-01-1995

Vermorel, O., Richard, S., Colin, O., Angelberger, C.,

Benkenida, A., Veynante, D., Multi-Cycle LES Simulations of Flow and Combustion in a PFI SI 4-Valve Production Engine, SAE Technical Paper 2007-01-0151, 2011.

doi: 10.4271/2007-01-0151

Pera, C., Angelberger, C., Large Eddy Simulation of

a Motored Single-Cylinder Engine Using System Simulation to Define Boundary Conditions: Methodology and Validation, SAE Int. J. Engines 4(1):948-963, 2011. doi: 10.4271/2011-01-0834

Thobois, L., Rymer, G., Soulères, T., Poinsot, T., Large Eddy Simulation in IC Engine Geometries, SAE Technical Paper 2004-01-1854, 2004. doi:10.4271/2004-01-1854

Hori, T., Kuge, T., Senda, J., and Fujimoto, H., Large Eddy Simulation of Diesel Spray Combustion with Eddy- Dissipation Model and CIP Method by Use of KIVALES, SAE Technical Paper 2007-01-0247, 2007. doi.org/10.4271/2007-01-0247

Banerjee, S., Liang, T., Rutland C. J., and Hu, B., Validation of an LES Multi Mode Combustion Model for Diesel Combustion, SAE Technical Paper 2010-01-0361, 2010. doi.org/10.4271/2010-01-0361

Mobasheri, R., and Peng, Z., Using Large Eddy Simulation for Studying Mixture Formation and Combustion Process in a DI Diesel Engine, SAE Technical Paper 2012-01-1716, 2012. doi.org/10.4271/2012-01-1716

Wang, Z., Swantek, A., Scarcelli, R., Duke, D. et al.,

LES of Diesel and Gasoline Sprays with Validation against X-Ray Radiography Data, SAE Int. J. Fuels Lubr. 8(1):147-159, 2015.

doi.org/10.4271/2015-01-093

Farrace, D., Panier, R., Schmitt, M., Boulouchos, K. et al.,

Analysis of Averaging Methods for Large Eddy Simulations of Diesel Sprays,

SAE Int. J. Fuels Lubr. 8(3):568-580, 2015. doi.org/10.4271/2015-24-2464

Blomberg, C., Zeugin, L., Pandurangi, S., Bolla, M. et al.,

Modeling Split Injections of ECN “Spray A” Using

a Conditional Moment Closure Combustion Model with RANS and LES, SAE Int. J. Engines 9(4):2107-2119, 2016. doi.org/10.4271/2016-01-2237

R. I. Issa, Solution of the Implicitly Discretized Fluid Flow Equations by Operator-splitting, In Journal of Computational Physics, Volume 62, Issue 1, 1986, Pages 40-65, ISSN 0021-9991. doi.org/10.1016/0021-9991(86)90099-9

Lesieur, M., Métais, O., Comte, P. Large-Eddy Simulations of Turbulence, Cambridge: Cambridge University Press, 2005. doi:10.1017/CBO9780511755507.

Smagorinsky, J., General Circulation Experiments with the Primitive Equations, Mon. Weather Rev., Vol. 91(3): 99-164, 1963.

Hiromichi Kobayashi, The Subgrid-scale Models Based on Coherent Structures for Rotating Homogeneous Turbulence and Turbulent Channel Flow, Physics of Fluids, 17, 045104, 2005.

Hiromichi Kobayashi, Hama, F. and Wu, X., Application of a Local SGS Model Based on Coherent Structures to Complex Geometries, International Journal of Heat and Fluid Flow 29 (2008) 640-653.

Zeldovich, Y. B., Sadovnikov, P. Y. and Frank-Kamenetskii, D. A., Oxidation of Nitrogen in Combustion, Translation by M. Shelef, Academy of Sciences of USSR, Institute of Chemical Physics, Moscow-Leningrad, 1947.

Dukowicz, J.K., A Particle-Fluid Numerical Model for Liquid Sprays, J. Comp. Physics, 35, 229-253, 1980.

Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill series in mechanical engineering, printed in USA. McGraw-Hill, 1988. ISBN 0-07-028637-X.

Dec, J. E., A Conceptual Model of DI Diesel Combustion

Based on Laser-Sheet Imaging, Technical Paper 970873,

doi.org/10.4271/970873

Lovas, T., Mauss, F., Hasse C. and Peters, N., Modeling

of HCCI Combustion Using adaptive Chemical Kinetics,

SAE Technical Paper 2002-01-0426, 2002.

Kong, S.C., Marriott, C.D:, Reitz, R.D. and Christensen, M.,

Modeling and Experiments of HCCI Engine Combustion Using Detailed Chemical Kinetics with Multidimensional CFD, SAE 2001-01-1026, 2001.

Liang L., Stevens J.G., Farell J.T., A dynamic multi-zone partitioning scheme for solving detailed chemical kinetics in reactive flow computations, Combust. Sci. and Tech. 181: 1345-1371, 2009.

Vávra, J., Bortel, I., Takáts, M., Diviš, M., Emissions and performance of diesel-natural gas dual-fuel engine operated with stoichiometric mixture, Fuel, 2017 (Volume 208), p. 722-733. ISSN 0016-2361. doi.org/10.1016/j.fuel.2017.07.057

Reitz, R. D., Mechanisms of Atomization Processes in High-Pressure Vaporizing Sprays, Atomization and Spray Technology. 3. 309–337. 1987.

Reitz, R. D. and Bracco, F. V., Mechanisms of Breakup of Round Liquid Jets, The Encyclopedia of Fluid Mechanics, ed. N. Cheremisnoff. 3. 223–249. 1986.

Mehl M., Pitz, W. J., Westbrook, C. K., Curran, H. J.,

Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions, Proceedings of the Combustion Institute 33:193-200 (2011).

Westbrook, C. K., Pitz, W. J., Herbinet, O., Curran, H.

J. and Silke, E.J., A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane, Combustion and Flame 156:181-199 (2009).

Pei, Y., Mehl, M., Liu, W., Lu, T., Pitz, W. J. and Som, S.,

A Multi-Component Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications, Journal of Engineering for Gas Turbines and Power, GTP-15-1057 (2015).

Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldeberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C., Jr., Lissianski, V.V. and Qin, Z., http://www.me.berkeley.edu/gri_mech/

Kyrtatos, P., Brückner, C., Boulouchos, K., Cycle-to- Cycle Variations in Diesel Engines, Applied Energy, Volume 171, 2016, Pages 120-132, ISSN 0306-2619. doi.org/10.1016/j.apenergy.2016.03.015.

Torelli, R., Matusik, K., Nelli, K., Kastengren, A. et al., Evaluation of Shot-to-Shot In-Nozzle Flow Variations

in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry, SAE Technical Paper 2018-01-0303, 2018. doi.org/10.4271/2018-01-0303

AVL AST (2017.1). FIRE Manual v2017.1, AVL List GmbH, Graz.

GT-Power User’s Manual, GT-Suite version 7.3. Gamma Technologies Inc., 2012.

Downloads

Published

2018-12-01

Issue

Section

Articles