IMPLICATION OF CYCLE-TO-CYCLE VARIABILITY IN SI ENGINES

Authors

  • Karel Páv Technická univerzita v Liberci, Katedra vozidel a motorů, Studentská 2, Liberec 461 17

Keywords:

SI Engine, Cycle-to-Cycle Variability, Adaptive Combustion Model, Spark Timing, Ignition Delay, Variability Factor, Fuel Consumption

Abstract

The paper deals with utilization of an adaptive combustion model in order to simulate cycle‐to‐cycle combustion variability of SI engines. The used empirical adaptive combustion model consists of two parts: the first part for ignition delay prediction and the second part for in‐cylinder combustion process description. There is proved mutual independence of these two phases and shown their characteristics in terms of cycle‐to‐cycle variability. The practical utilization of the cycle‐to‐cycle variability simulation is demonstrated by computational analysis of various variability levels at different engine operational points in order to assess its impact on engine fuel consumption. The calculation results are generalized for SI gasoline engines independent of both engine load and combustion rate as well.

References

BEROUN S., PÁV K. (2013). Vybrané statě z vozidlových spalovacích motorů, Liberec, ISBN 978‐80‐7372‐957‐8

DOANE D. P., SEWARD L. E. (2011). Measuring Skewness: A Forgotten Statistic?, In: Journal of Statistics Education, Volume 19, Number 2

HEYWOOD J. B. (1988). Internal Combustion Engines Fundamentals, McGraw‐Hill, ISBN 0‐07‐028637‐X

PÁV K. (2016). Adaptivní model hoření homogenní směsi ve válci zážehového spalovacího motoru, Habilitation Thesis, Liberec

PÁV K. (2016). Adaptive Combustion Model for SI Engines, In: XLVII. International Scientific Conference of Czech

and Slovak University Departments and Institutions Dealing with the Research of Combustion Engines, Brno, pp. 149–156, ISBN 978‐80‐214‐5379‐1

PÁV K. (2017). Simulace pracovního oběhu 4T, Calculation Software – Microsoft Excel

PISCHINGER R. (2002). Engine Indicating, User Handbook, AVL Graz

POETSCH C., SCHUEMIE H., OFNER H., TATSCHL R., VITEK O. (2013). A Computational Study on the Impact of Cycle‐to‐Cycle Combustion Fluctuations on Fuel Consumption and Knock in Steady‐State and Drivecycle Operation, SAE Technical Paper 2013‐24‐0030, doi:10.4271/2013‐24‐0030

SCHNEIDER A., HETTINGER A., SCHÜNEMANN E. (2016).

Optical Investigations of Flame Kernel Formation in an SI Engine with Diluted Mixture, In: 12th International Symposium on Combustion Diagnostics, Baden‐Baden, pp. 61‐79, ISBN 978‐3‐9816971‐2‐4

TATSCHL R., BOGENSPERGER M., PAVLOVIC Z., PRIESCHING P., SCHUEMIE H., VITEK O., MACEK, J.

(2013). LES Simulation of Flame Propagation in a Direct‐ Injection SI‐Engine to Identify the Causes of Cycle‐to‐Cycle Combustion Variations, SAE Technical Paper 2013‐01‐1084, doi:10.4271/2013‐01‐1084

VITEK O., MACEK J., POETSCH C., TATSCHL R. (2013).

Modeling Cycle‐to‐Cycle Variations in 0‐D/1‐D Simulation by Means of Combustion Model Parameter Perturbations based on Statistics of Cycle‐Resolved Data, SAE Technical Paper 2013‐01‐1314, doi:10.4271/2013‐01‐1314

Downloads

Published

2018-04-01

Issue

Section

Articles