IDENTIFICATION OF CYCLE-TO-CYCLE VARIABILITY SOURCES IN SI ICE BASED ON CFD MODELING

Authors

  • Oldřich Vítek Czech Technical University in Prague, Department of Automotive, Combustion Engine and Railway Engineering Technická 4, CZ‐16607 Prague 6, Tel.: +420224352507, Fax: +420224352500
  • Vít Doleček Czech Technical University in Prague, Department of Automotive, Combustion Engine and Railway Engineering Technická 4, CZ‐16607 Prague 6, Tel.: +420224352507, Fax: +420224352500
  • Zbyněk Syrovátka Czech Technical University in Prague, Department of Automotive, Combustion Engine and Railway Engineering Technická 4, CZ‐16607 Prague 6, Tel.: +420224352507, Fax: +420224352500
  • Jan Macek Czech Technical University in Prague, Department of Automotive, Combustion Engine and Railway Engineering Technická 4, CZ‐16607 Prague 6, Tel.: +420224352507, Fax: +420224352500

Keywords:

Large Eddy Simulation, LES, CFD, SI ICE, Cycle to Cycle Variation, CCV, Multi-Cycle Calculations

Abstract

The presented paper deals with modelling of cycle‐to‐cycle variations (CCV) in SI ICEs by means of 3‐D CFD LES approach. The main goals are the following: to identify the most important sources of CCV and to compare 2 different ignition systems: classical spark ignition and turbulent flame jet. Calibrated 3‐D CFD LES models of these engines are applied to perform time‐demanding multi‐cycle calculations of selected engine operating points. The simulation data are analyzed including comparison with experimental data and main conclusions are drawn. The turbulence, which is generated during intake stroke, is identified as the main CCV source while early flame kernel development (strongly influenced by local turbulence) is also important.

Tento článek se zabývá modelováním mezicyklové variability v zážehových spalovacích motorech pomocí 3‐D CFD LES přístupu. Hlavní cíle práce jsou následující: identifikace hlavních zdrojů mezicyklové variability a porovnání 2 různých systémů pro zapálení směsi: klasický zážeh pomocí svíčky a turbulentní hořící paprsek. Kalibrované 3‐D CFD LES modely těchto motorů jsou použity pro časově náročné simulace mnoha po sobě následujících cyklů pro vybrané pracovní body těchto motorů. Data ze simulací jsou analyzována včetně srovnání s experimenty a jsou formulovány hlavní závěry. Turbulence, která je primárně generována během sacího zdvihu, je identifikována jako hlavní zdroj mezicyklové variability, zatímco co úvodní fáze vývinu jádra plemene (silně ovlivněna lokální turbulencí) je taky důležitá.

References

Moureau,V.,Barton,I.,Angelberger,C.,Poinsot,T.,

Towards Large Eddy Simulation in Internal‐ Combustion Engines: Simulation of a Compressed Tumble Flow, SAE Technical Paper 2004‐01‐1995, 2004, doi: 10.4271/2004‐01‐1995.

Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., Veynante, D., 2007. Multi‐Cycle LES Simulations of Flow and Combustion in a PFI SI 4‐Valve Production Engine, SAE Technical Paper 2007‐01‐0151, 2011, doi: 10.4271/2007‐01‐0151.

Pera, C., Angelberger, C., 2011. Large Eddy Simulation

of a Motored Single‐Cylinder Engine Using System Simulation to Define Boundary Conditions: Methodology and Validation, SAE Int. J. Engines 4(1):948‐963, doi: 10.4271/2011‐01‐0834.

Thobois, L., Rymer, G., Soulères, T., Poinsot, T., 2004. Large‐ Eddy Simulation in IC Engine Geometries, SAE Technical Paper 2004‐01‐1854, 2004, doi:10.4271/2004‐01‐1854.

Vitek, O., Macek, J., Tatschl, R., Pavlovic, Z. et al., 2012.

LES Simulation of Direct Injection SI‐Engine In‐Cylinder Flow, SAE Technical Paper 2012‐01‐0138, https://doi. org/10.4271/2012‐01‐0138.

Tatschl, R., Bogensperger, M., Pavlovic, Z., Priesching, P. et al., 2013. LES Simulation of Flame Propagation in a Direct‐ Injection SI‐Engine to Identify the Causes of Cycle‐to‐Cycle Combustion Variations, SAE Technical Paper 2013‐01‐1084, https://doi.org/10.4271/2013‐01‐1084.

Vítek, O., Macek, J., Pavlovic, Z., et al., 2016. Statistical Analysis of Detailed 3‐D CFD LES Simulations with Regard to CCV Modeling, Journal of Middle European Construction and Design of Cars, 14(1), pp. 1‐16. doi:10.1515/ mecdc‐2016‐0001

R. Issa, 1991. Solution of the Implicitly Discretized Fluid Flow Equations by Operator‐splitting, In Journal of Computational Physics, Volume 62, Issue 1, 1986, Pages 40‐65, ISSN 0021‐9991, https://doi.org/10.1016/0021‐ 9991(86)90099‐9.

Lesieur, M., Métais, O., Comte, P., 2005. Large‐Eddy Simulations of Turbulence, Cambridge: Cambridge University Press, 2005. doi:10.1017/CBO9780511755507.

Smagorinsky, J., 1963. General Circulation Experiments with the Primitive Equations, Mon. Weather Rev., Vol. 91(3): 99‐164

Hiromichi Kobayashi, 2005. The Subgrid‐scale Models Based on Coherent Structures for Rotating Homogeneous Turbulence and Turbulent Channel Flow, Physics of Fluids, 17, 045104.

Hiromichi Kobayashi, Hama, F. and Wu, X., 2008.

Application of a Local SGS Model Based on Coherent Structures to Complex Geometries, International Journal of Heat and Fluid Flow 29 640‐653.

Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C. and Veynante D., 2007. Towards Large Eddy Simulation of Combustion in Spark Ignition Engines, Proceedings of the Combustion Institute, Vol. 31, No. 1, pp. 3059‐3066.

Zeldovich, Y. B., Sadovnikov, P. Y. and Frank‐Kamenetskii, D. A., 1947. Oxidation of Nitrogen in Combustion, Translation by M. Shelef, Academy of Sciences of USSR, Institute of Chemical Physics, Moscow‐Leningrad.

Dukowicz, J.K., 1980. Particle‐Fluid Numerical Model for Liquid Sprays, J. Comp. Physics, 35, 229‐253.

Vávra, J., Syrovátka, Z., Takáts, M., Barrientos, E., 2016.

Scavenged Pre‐chamber on a Gas Engine for Light Duty Truck, ASME 2016 Internal Combustion Engine Fall Technical Conference, ICEF 2016, doi: 10.1115/ ICEF20169423.

Syrovatka, Z., Takats, M., and Vavra, J., 2007. Analysis of Scavenged Pre‐Chamber for Light Duty Truck Gas Engine, SAE Technical Paper 2017‐24‐0095, 2017, doi:10.4271/2017‐24‐0095.

Vítek, O., Macek, J., Poetsch, C., Tatschl, R., 2013. Modeling Cycle‐to‐Cycle Variations in 0‐D/1‐D Simulation by Means of Combustion Model Parameter Perturbations based on Statistics of Cycle‐Resolved Data, SAE Int. J. Engines, 6(2), doi: 10.4271/2013‐01‐1314.

Heywood, J. B., 1988. Internal Combustion Engine Fundamentals, McGraw‐Hill series in mechanical engineering, printed in USA. McGraw‐Hill.

ISBN 0‐07‐028637‐X.

Peters, N., 2000. Turbulent Combustion, The Press Syndicate of the University of Cambridge, The Pitt Building, Trumpington Street, Cambridge. ISBN 0‐521‐66082‐3.

Vítek, O., Mareš, B., Macek, J., 2014. Application of LES Turbulence Model to Motored 4‐Stroke Internal Combustion Engine, Colloquium Fluid Dynamics 2010, October 2013.

AVL AST (2014). FIRE Manual v2014, AVL List GmbH, Graz.

BOOST 2011SP1 [DVD]. AVL List GmbH, 2011.

GT‐Power User’s Manual, GT‐Suite version 7.3. Gamma

Technologies Inc., 2012.

Downloads

Published

2018-04-01

Issue

Section

Articles