IDENTIFICATION OF CYCLE-TO-CYCLE VARIABILITY SOURCES IN SI ICE BASED ON CFD MODELING
Keywords:
Large Eddy Simulation, LES, CFD, SI ICE, Cycle to Cycle Variation, CCV, Multi-Cycle CalculationsAbstract
The presented paper deals with modelling of cycle‐to‐cycle variations (CCV) in SI ICEs by means of 3‐D CFD LES approach. The main goals are the following: to identify the most important sources of CCV and to compare 2 different ignition systems: classical spark ignition and turbulent flame jet. Calibrated 3‐D CFD LES models of these engines are applied to perform time‐demanding multi‐cycle calculations of selected engine operating points. The simulation data are analyzed including comparison with experimental data and main conclusions are drawn. The turbulence, which is generated during intake stroke, is identified as the main CCV source while early flame kernel development (strongly influenced by local turbulence) is also important.
Tento článek se zabývá modelováním mezicyklové variability v zážehových spalovacích motorech pomocí 3‐D CFD LES přístupu. Hlavní cíle práce jsou následující: identifikace hlavních zdrojů mezicyklové variability a porovnání 2 různých systémů pro zapálení směsi: klasický zážeh pomocí svíčky a turbulentní hořící paprsek. Kalibrované 3‐D CFD LES modely těchto motorů jsou použity pro časově náročné simulace mnoha po sobě následujících cyklů pro vybrané pracovní body těchto motorů. Data ze simulací jsou analyzována včetně srovnání s experimenty a jsou formulovány hlavní závěry. Turbulence, která je primárně generována během sacího zdvihu, je identifikována jako hlavní zdroj mezicyklové variability, zatímco co úvodní fáze vývinu jádra plemene (silně ovlivněna lokální turbulencí) je taky důležitá.
References
Moureau,V.,Barton,I.,Angelberger,C.,Poinsot,T.,
Towards Large Eddy Simulation in Internal‐ Combustion Engines: Simulation of a Compressed Tumble Flow, SAE Technical Paper 2004‐01‐1995, 2004, doi: 10.4271/2004‐01‐1995.
Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., Veynante, D., 2007. Multi‐Cycle LES Simulations of Flow and Combustion in a PFI SI 4‐Valve Production Engine, SAE Technical Paper 2007‐01‐0151, 2011, doi: 10.4271/2007‐01‐0151.
Pera, C., Angelberger, C., 2011. Large Eddy Simulation
of a Motored Single‐Cylinder Engine Using System Simulation to Define Boundary Conditions: Methodology and Validation, SAE Int. J. Engines 4(1):948‐963, doi: 10.4271/2011‐01‐0834.
Thobois, L., Rymer, G., Soulères, T., Poinsot, T., 2004. Large‐ Eddy Simulation in IC Engine Geometries, SAE Technical Paper 2004‐01‐1854, 2004, doi:10.4271/2004‐01‐1854.
Vitek, O., Macek, J., Tatschl, R., Pavlovic, Z. et al., 2012.
LES Simulation of Direct Injection SI‐Engine In‐Cylinder Flow, SAE Technical Paper 2012‐01‐0138, https://doi. org/10.4271/2012‐01‐0138.
Tatschl, R., Bogensperger, M., Pavlovic, Z., Priesching, P. et al., 2013. LES Simulation of Flame Propagation in a Direct‐ Injection SI‐Engine to Identify the Causes of Cycle‐to‐Cycle Combustion Variations, SAE Technical Paper 2013‐01‐1084, https://doi.org/10.4271/2013‐01‐1084.
Vítek, O., Macek, J., Pavlovic, Z., et al., 2016. Statistical Analysis of Detailed 3‐D CFD LES Simulations with Regard to CCV Modeling, Journal of Middle European Construction and Design of Cars, 14(1), pp. 1‐16. doi:10.1515/ mecdc‐2016‐0001
R. Issa, 1991. Solution of the Implicitly Discretized Fluid Flow Equations by Operator‐splitting, In Journal of Computational Physics, Volume 62, Issue 1, 1986, Pages 40‐65, ISSN 0021‐9991, https://doi.org/10.1016/0021‐ 9991(86)90099‐9.
Lesieur, M., Métais, O., Comte, P., 2005. Large‐Eddy Simulations of Turbulence, Cambridge: Cambridge University Press, 2005. doi:10.1017/CBO9780511755507.
Smagorinsky, J., 1963. General Circulation Experiments with the Primitive Equations, Mon. Weather Rev., Vol. 91(3): 99‐164
Hiromichi Kobayashi, 2005. The Subgrid‐scale Models Based on Coherent Structures for Rotating Homogeneous Turbulence and Turbulent Channel Flow, Physics of Fluids, 17, 045104.
Hiromichi Kobayashi, Hama, F. and Wu, X., 2008.
Application of a Local SGS Model Based on Coherent Structures to Complex Geometries, International Journal of Heat and Fluid Flow 29 640‐653.
Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C. and Veynante D., 2007. Towards Large Eddy Simulation of Combustion in Spark Ignition Engines, Proceedings of the Combustion Institute, Vol. 31, No. 1, pp. 3059‐3066.
Zeldovich, Y. B., Sadovnikov, P. Y. and Frank‐Kamenetskii, D. A., 1947. Oxidation of Nitrogen in Combustion, Translation by M. Shelef, Academy of Sciences of USSR, Institute of Chemical Physics, Moscow‐Leningrad.
Dukowicz, J.K., 1980. Particle‐Fluid Numerical Model for Liquid Sprays, J. Comp. Physics, 35, 229‐253.
Vávra, J., Syrovátka, Z., Takáts, M., Barrientos, E., 2016.
Scavenged Pre‐chamber on a Gas Engine for Light Duty Truck, ASME 2016 Internal Combustion Engine Fall Technical Conference, ICEF 2016, doi: 10.1115/ ICEF20169423.
Syrovatka, Z., Takats, M., and Vavra, J., 2007. Analysis of Scavenged Pre‐Chamber for Light Duty Truck Gas Engine, SAE Technical Paper 2017‐24‐0095, 2017, doi:10.4271/2017‐24‐0095.
Vítek, O., Macek, J., Poetsch, C., Tatschl, R., 2013. Modeling Cycle‐to‐Cycle Variations in 0‐D/1‐D Simulation by Means of Combustion Model Parameter Perturbations based on Statistics of Cycle‐Resolved Data, SAE Int. J. Engines, 6(2), doi: 10.4271/2013‐01‐1314.
Heywood, J. B., 1988. Internal Combustion Engine Fundamentals, McGraw‐Hill series in mechanical engineering, printed in USA. McGraw‐Hill.
ISBN 0‐07‐028637‐X.
Peters, N., 2000. Turbulent Combustion, The Press Syndicate of the University of Cambridge, The Pitt Building, Trumpington Street, Cambridge. ISBN 0‐521‐66082‐3.
Vítek, O., Mareš, B., Macek, J., 2014. Application of LES Turbulence Model to Motored 4‐Stroke Internal Combustion Engine, Colloquium Fluid Dynamics 2010, October 2013.
AVL AST (2014). FIRE Manual v2014, AVL List GmbH, Graz.
BOOST 2011SP1 [DVD]. AVL List GmbH, 2011.
GT‐Power User’s Manual, GT‐Suite version 7.3. Gamma
Technologies Inc., 2012.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Oldřich Vítek, Vít Doleček, Zbyněk Syrovátka, Jan Macek
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).