How reliable are line intensities for temperature calculation using the Boltzmann plot method

Authors

  • M. Henkel Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
  • D. Gonzalez Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany

DOI:

https://doi.org/10.14311/ppt.2025.1.46

Keywords:

boltzmann plot method, Electron temperature, spectral line, accuracy

Abstract

This study investigates the reliability of electron temperature calculations for plasmas using line intensities, specifically through the Boltzmann plot method. Simulated spectra of a copper plasma reveal that while using line intensities may be sufficient under certain conditions, significant deviations arise under high-pressure and low-temperature scenarios. Our findings emphasize the need for caution, as inaccuracies can occur when the optical depth reaches a relevant magnitude.

References

A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team (2022). Atomic Spectra Database (version 5.10), National Institute of Standards and Technology NIST, Gaithersburg, MD, 2022. URL: https://www.nist.gov/pml/atomic-spectra-database.

R. Kurucz and B. Bell. Atomic line data (2022), 2022. URL: https://lweb.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html.

S. Günter. Einführung in die Plasmaphysik 1. Max-Planck-Institut für Plasmaphysik, Technische Universität München, 2013. URL: https://www.ipp.mpg.de/1166987/script_ws.pdf.

F. J. Rogers. Occupation numbers for reacting plasmas: The role of the planck-larkin partition function. Astrophysical Journal, 310:723, 1986. URL: https://articles.adsabs.harvard.edu/pdf/1986ApJ...310..723R.

N. Bogatyreva and ohers. Mean absorption coefficients of air plasmas. Journal of Physics: Conference Series, 275(1):012009, 2011. doi:10.1088/1742-6596/275/1/012009.

M. Henkel and others. Determination of elemental concentrations in underwater libs plasmas using spectra simulation for copper-zinc alloys. submited to Journal of Analytical Atomic Spectrometry, 2025.

P. Meenakshi and others. Line broadening studies in low energy plasma focus. Pramana J. Phys., 32(5):627–639, 1989. URL: https://www.ias.ac.in/article/fulltext/pram/032/05/0627-0639.

B. Zmerli and others. Stark broadening calculations of neutral copper spectral lines and temperature dependence. Phys. Scr., 82(05):055301, 2010. doi:10.1088/0031-8949/82/05/055301.

E. Babina et al. The complete calculation of stark broadening parameters for then neutral atoms spectral lines of 4s2s-4p2p0 and 4s22d-4p2p0 multiplets in the dipole approximation. Publ. Astron. Obs. Belgrade, 76:163–166, 2003. URL: https://articles.adsabs.harvard.edu/pdf/2003POBeo..76..163B.

N. Konjevic. et al. Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1989 through 2000). J. Phys. Chem. Ref. Data, 31(3):819–927, 2002. doi:10.1063/1.1486456.

N. Konjevic. and J. Roberts. A critical review of the stark widths and shifts of spectral lines from non-hydrogenic atoms. J. Phys. Chem. Ref. Data, 5(2):209–257, 1976. doi:10.1063/1.555532.

Downloads

Published

2025-08-26

Issue

Section

Articles