Rayleigh-Taylor Instability with Finite Skin Depth

Authors

  • F. E. M. Silveira Universidade Federal do ABC, Rua Santa Adélia, 166, Bairro Bangu, 09210-170, Santo André, SP

DOI:

https://doi.org/10.14311/ppt.2018.3.95

Keywords:

resistive instabilities, inertial effects, boundary-layers, scaling laws

Abstract

In this work, the Rayleigh-Taylor instability is addressed in a viscous-resistive current slab, by assuming a finite electron skin depth. The formulation is developed on the basis of an extended form of Ohm’s law, which includes a term proportional to the explicit time derivative of the current density. In the neighborhood of the rational surface, a viscous-resistive boundary-layer is defined in terms of a resistive and a viscous boundary layers. As expected, when viscous effects are negligible, it is shown that the viscous-resistive boundary-layer is given by the resistive boundary-layer. However, when viscous effects become important, it is found that the viscous-resistive boundary-layer is given by the geometric mean of the resistive and viscous boundary-layers. Scaling laws of the time growth rate of the Rayleigh-Taylor instability with the plasma resistivity, fluid viscosity, and electron number density are discussed.

References

L. Rayleigh, Proc. London Math. Soc., 14:170, 1883. doi: 10.1112/plms/s1-14.1.170

G. I. Taylor, Proc. R. Soc. London, Ser., A 201:192, 1950.

G. Schmidt, Physics of High Temperature Plasmas, 2nd ed. (Academic Press, New York, 1979).

F. E. M. Silveira and H. I. Orlandi, Phys. Plasmas, 23(4):042111, 2016. doi: 10.1063/1.4947538

F. E. M. Silveira and H. I. Orlandi, Phys. Plasmas, 24(3):032112, 2017. doi: 10.1063/1.4978790

R. J. Goldston and P. H. Rutherford, Introduction to Plasma Physics (Institute of Physics, London, 1997).

J. P. Freidberg, Ideal MHD (Cambridge University Press, Cambridge, 2014).

G. Bateman, MHD Instabilities (MIT Press, Cambridge, 1980).

L. Spitzer, Physics of Fully Ionized Gases, 2nd ed. (Dover Publications, New York, 2006).

J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, New York, 1975).

K. T. K. Loebner, T. C. Underwood, and M. A. Cappelli, Phys. Rev. Lett., 115(17):175001, 2015. doi:10.1103/PhysRevLett.115.175001

K. T. K. Loebner, T. C. Underwood, T. Mouratidis, and M. A. Cappelli, Appl. Phys. Lett. 108(9):094104, 2016. doi:10.1063/1.4943370

K. T. K. Loebner, T. C. Underwood, B. C. Wang, and M. A. Cappelli, IEEE Trans. Plasma Sci., 44(9):1534, 2016. doi:10.1109/TPS.2016.2565508

A. W. Leonard, A. Herrmann, K. Itami, J. Lingertat, A. Loarte, T. H. Osborne, W. Suttrop, ITER Divertor Modeling and Database Expert Group, and ITER Divertor Physics Expert Group, J. Nucl. Mater., 266-269:109-117, 1999. doi:10.1016/S0022-3115(98)00522-4

G. Federici, A. Zhitlukhin, N. Arkhipov, R. Giniyatulin, N. Klimov, I. Landman, V. Podkovyrov, V. Safronov, A. Loarte, and M. Merola, J. Nucl. Mater., 337-339(spec iss 1-3):684-690, 2005. doi:10.1016/j.jnucmat.2004.10.149

I. E. Garkusha, N. I. Arkhipov, N. S. Klimov, V. A. Makhlaj, V. M. Safronov, I. Landman, and V. I. Tereshin, Phys. Scr. T138:014054, 2009. doi:10.1088/0031-8949/2009/T138/014054

Downloads

Published

2019-01-08

Issue

Section

Articles