Investigation of Peculiarities of the Discharge Excitation with Hollow Cathode Effect in N2 in a Tube Electrode

Authors

  • S. Bordusau Belarusian State University of Informatics and Radioelectronics, P.Brovki 6, 220013 Minsk
  • A. Bozhko Belarusian State University of Informatics and Radioelectronics, P.Brovki 6, 220013 Minsk
  • S. Madveika Belarusian State University of Informatics and Radioelectronics, P.Brovki 6, 220013 Minsk
  • O. Tsikhan Belarusian State University of Informatics and Radioelectronics, P.Brovki 6, 220013 Minsk
  • I. Barouski Belarusian State University of Informatics and Radioelectronics, P.Brovki 6, 220013 Minsk

DOI:

https://doi.org/10.14311/ppt.2018.3.99

Keywords:

discharge, hollow cathode, vacuum, tube electrode

Abstract

The influence of some constructive discharge system elements on the electric excitation modes and stable maintaining of pulse glow discharge plasma in N2 in a hollow tube cathode has been investigated. The following discharge system changes have been performed: the position of a hollow electrode-cathode in the dielectric tube-holder; the method of plasma forming gas feeding to the discharge area; the distance between the electrode-cathode and counter-electrode (grounded anode). The investigation has been carried out within 50–700 Pa N2 pressure range. The obtained results may be used in the design of gas discharge systems with hollow cathode effect.

References

K. A. Shamoo. Effect of nitrogen gas pressure and hollow cathode geometry on the luminous intensity emitted from glow discharge plasma. American Journal of Modern Physics, 2(6):276–281, 2013. doi:10.11648/j.ajmp.20130206.11.

E. Sozer, K. Koppisetty, and H. Kirkici. Pulsed hollow cathode discharge characteristics. Pulsed Power Conference, 2, 2007. doi:10.1109/PPPS.2007.4345503.

F. Yangyang, J. P. Verboncoeur, A. J. Christlieb, and X. Wang. Transition characteristics of low-pressure discharges in a hollow cathode. Physics of Plasmas, 24(Issue 8):083516, 2017. doi:10.1063/1.4997764.

V. V. Budilov, K. N. Ramazanov, Y. G. Khusainov, I. V. Zolotov, and N. S. Babenko. Application of hollow cathode effect for local ion nitriding of machine arts. Journal of Physics: Conference Series, 652(1):012052, 2015.

S. Janosi and A. K. Kolozsvary. Controlled hollow cathode effect: New possibilities for heating low-pressure furnaces. Metal Science and Heat Treatment, 46(Issue 7-8):310–316, 2004. doi:10.1023/B:MSAT.0000048840.94386.25.

S. F. Brunatto, A. N. Klein, and J. L. R. Muzart. Hollow cathode discharge: application of a deposition treatment in the iron sintering. Review of Scientific Instruments, 30(2):145–151, 2008. doi:10.1590/S1678-58782008000200007.

V. I. Gushenets, A. S. Bugaev, E. M. Oks, P. M. Schanin, and A. A. Goncharov. Self-heated hollow cathode discharge system for charged particle sources and plasma generators. Review of Scientific Instruments, 81(Issue 6):02B305, 2010. doi:10.1063/1.3258033.

S. Bordusau, S. Madveika, M. Lushakova, and N. Kovalchuk. The influence of microwave cf4 plasma activation on the characteristics of reactive ion etching of mono-si. Plasma Physics and Technology, 4(1):13–16, 2017. doi:10.14311/ppt.2017.1.13.

H. Amemiya and K. Ogawa. Characteristics of a hollow-cathode discharge containing negative ions. Journal of Physics D: Applied Physics, 30(5):879. doi:10.1088/0022-3727/30/5/021.

A. R. Petre, M. Bazavan, A. Covlea, V. V. Covlea, and H. Andrei. Characterization of a dc plasma with hollow cathode effect. Romanian Reports in Phisics, 56(2):271–276, 2004.

D. Maric, N. Skoro, G. Malovic, Z. L. Petrovic, V. Mihailov, and R. Djulgerova. Hollow cathode discharges: Volt-ampere characteristics and space-time resolved structure of the discharge. Journal of Physics: Conference Series, 162(1):012007, 2009. doi:10.1088/1742-6596/162/1/012007.

Downloads

Published

2019-01-08

Issue

Section

Articles