Diagnostics of Nitrogen-methane Atmospheric Glow Discharge Used for a Mimic of Prebiotic Atmosphere


  • V. Mazánková Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno
  • L. Töröková Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno
  • D. Trunec Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno
  • F. Krčma Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno
  • S. Matejčík Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava
  • N. J. Mason Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA




prebiotic atmosphere, Fourier Transform Infra Red spectroscopy, glow discharge


The exploration of planetary atmosphere is being advanced by the exciting results of the Cassin-Huygens mission to Titan. The complex chemistry revealed in such atmospheres leading to the synthesis of bigger molecules is providing new insights into our understanding of how life on Earth developed. This work extends our previous investigation of nitrogen-methane (N2-CH4) atmospheric glow discharge for simulation chemical processes in prebiotic atmospheres. In presented experiments 2 % of water vapor were addet to nitrogen-methane gas mixture. Exhaust products of discharge in this gas mixture were in-situ analysed by Fourier Transform Infra Red spectroscopy (FTIR). The major products identified in spectra were: hydrogen cyanide, acetylene and acetonitrile.


S. L. Miler. A production of amino acids under possible primitive earth conditions. Science, 117(3046):528–529, 1953. doi:10.1126/science.117.3046.528.

T. M. McCollom. Miller-Urey and beyond: What have we learned about prebiotic organic synthesis reactions in the past 60 years?. Annu. Rev. Earth. Planet. Sci., 41:207–229, 2013. doi:10.1146/annurev-earth-040610-133457.

A. Johnson, H. J. Cleaves, J. L. Bada, and A. Lazcano. The diversity of the original pre-biotic soup: Re-analyzing the original Miller-Urey spark discharge experiments. Orig. Life. Evol. Biosph., 39:240–241, 2009.

S. M. Hörst. Formation of amino acids and nucleotide bases in a titan atmosphere simulation experiment. Astrobiology, 12:809–817, 2009. doi:10.1089/ast.2011.0623.

C. Chyba and C. Sagan. Endogenous production, exogenous delivery and impact shock synthesis of organic molecules: An inventory for the origins of life. Nature, 355:125–132, 1992. doi:10.1038/355125a0.

C. F. Chyba, P. J. Thomas, Brookshaw, and C. L., Sagan. Cometary delivery of organic molecules to the early earth. Science, 249:366–373, 1990. doi:10.1126/science.11538074.

L. Torokova, J. Watson, F. Krcma, V. Mazankova, N.J. Mason, G. Horvath, and S. Matejcik. Gas chromatography analysis of discharge products in N2-CH4 gas mixture at atmospheric pressure: study of mimic Titan’s atmosphere. Contrib Plasma Phys, 55:470–480, 2015. doi:10.1002/ctpp.201400052.

A. Coustenis, D.E. Jennings, C.A. Nixon, R.K. Achterberg, P. Lavvas, S. Vinatier, N.A. Teanby, G.L. Bjoraker, R.C. Carlson, L. Piani, G. Bampasidis, F.M. Flasar, and P.N. Romani. Titan trace gaseous composition from CIRS at the end of the Cassini-Huygens prime mission. Icarus, 207:461–476, 2010. doi:10.1016/j.icarus.2009.11.027.

S.M. Horst and M.A. Tolbert. The effect of carbon monoxide on planetary haze formation. Astrophys J, 781(53), 2014. doi:10.1088/0004-637X/781/1/53.

F. Raulin, C. Brasse, O. Poch, and P. Coll. Prebiotic-like chemistry on Titan. Chem Soc Rev, 41:5380–5393, 2012. doi:10.1039/C2CS35014A.

J.F. Kasting and M.T. Howard. Atmospheric composition and climate on the early earth. Philos Trans R Soc Lond B Biol Sci, 361:1733–1741, 2006. doi:10.1098/rstb.2006.1902.

J.F. Kasting and S. Ono. Palaeoclimates: the first two billion years. Philos Trans R Soc Lond B Biol Sci, 361:917–929, 2006. doi:10.1098/rstb.2006.1839.

S.L. Olson, L.R. Kump, and J.F. Kasting. Quantifying the areal extent and dissolved oxygen concentrations of archean oxygen oases. Chem Geol, 362:34–43, 2013. doi:10.1016/j.chemgeo.2013.08.012.