Heat Transfer in the Solid Cathode of a Hollow Cathode Plasma Torch

Authors

  • A. Monnoyer Laboratoire Plasma et Conversion d’Energie, Université de Toulouse, CNRS, INPT, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France
  • P. Freton Laboratoire Plasma et Conversion d’Energie, Université de Toulouse, CNRS, INPT, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France
  • J.-J. Gonzalez Laboratoire Plasma et Conversion d’Energie, Université de Toulouse, CNRS, INPT, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France

DOI:

https://doi.org/10.14311/ppt.2023.2.94

Keywords:

plasma torch, sheath model, cold cathode, heat conduction

Abstract

After recalling the working principle of hollow cathode plasma torches, we evaluate the heat flux profile on the cathodic arc root. This evaluation takes into account the physics of the cathode sheath. Particular attention is devoted to electron emission from the cold copper cathode. This heat flux profile is then used as a moving boundary condition to obtain the temperature field in the solid cathode with a heat conduction study, with the aim of discussing the problem of its erosion.

References

H. Minoo, A. Arsaoui, and A. Bouvier. An analysis of the cathode region of a vortex-stabilized arc plasma generator. Journal of Physics D: Applied Physics, 28(8):1630, aug 1995. doi:10.1088/0022-3727/28/8/012.

J. Brilhac, B. Pateyron, J. Coudert, et al. Study of the dynamic and static behavior of de vortex plasma torches: Part ii: Well-type cathode. Plasma chemistry and plasma processing, 15:257–277, 1995. doi:10.1007/BF01459699.

F. Sambou, J. J. Gonzalez, M. Benmouffok, and P. Freton. Theoretical study of the arc motion in the hollow cathode of a dc thermal plasma torch. Journal of Physics D: Applied Physics, 55(2):025201, oct 2021. doi:10.1088/1361-6463/ac2a76.

A. E. Guile, A. H. Hitchcock, K. Dimoff, and A. K. Vijh. Physical implications of an effective activation energy for arc erosion on oxidised cathodes. Journal of Physics D: Applied Physics, 15(11):2341, nov 1982. doi:10.1088/0022-3727/15/11/026.

P. Teste, T. Leblanc, and J. P. Chabrerie. Study of the arc root displacement and three-dimensional modelling of the thermal phenomena occurring in a hollow cathode submitted to an electric moving arc. Journal of Physics D: Applied Physics, 28(5):888, may 1995. doi:10.1088/0022-3727/28/5/010.

I. Beilis. Kinetic Theory. Mathematical Formulation of a Physically Closed Approach, pages 669–723. Springer International Publishing, Cham, 2020. ISBN 978-3-030-44747-2. doi:10.1007/978-3-030-44747-2_17.

F. Cayla, P. Freton, and J.-J. Gonzalez. Arc/cathode interaction model. IEEE Transactions on Plasma Science, 36(4):1944–1954, 2008. doi:10.1109/TPS.2008.927378.

J. J. Gonzalez, F. Cayla, P. Freton, and P. Teulet. Two-dimensional self-consistent modelling of the arc/cathode interaction. Journal of Physics D: Applied Physics, 42(14):145204, jun 2009. doi:10.1088/0022-3727/42/14/145204.

M. S. Benilov and A. Marotta. A model of the cathode region of atmospheric pressure arcs. Journal of Physics D: Applied Physics, 28(9):1869, sep 1995. doi:10.1088/0022-3727/28/9/015.

E. L. Murphy and R. H. Good. Thermionic emission, field emission, and the transition region. Phys. Rev., 102:1464–1473, Jun 1956. doi:10.1103/PhysRev.102.1464.

A. Guile. Arc-electrode phenomena. In Proceedings of the Institution of Electrical Engineers, volume 118, pages 1131–1154. IET, 1971.

R. Landfried, T. Leblanc, M. Kirkpatrick, and P. Teste. Assessment of the power balance at a copper cathode submitted to an electric arc by surface temperature measurements and numerical modelling. IEEE Transactions on Plasma Science, 40(4):1205–1216, 2012. doi:10.1109/TPS.2012.2185069.

Fluent.inc, ANSYS Fluent Users Guide v19.2.

Downloads

Published

2023-08-31

Issue

Section

Articles