Mechanisms Responsible for Arc Cooling in Different Gases in Turbulent Nozzle Flow

Authors

  • Y. Guo Pinggao Group Co. Ltd., Pingdingshan City, Henan, 467001
  • H. Zhang Pinggao Group Co. Ltd., Pingdingshan City, Henan, 467001
  • Y. Yao Pinggao Group Co. Ltd., Pingdingshan City, Henan, 467001
  • Q. Zhang Department of Electrical Engineering and Electronics, the University of Liverpool, Liverpool L69 3GJ
  • J. D. Yan Department of Electrical Engineering and Electronics, the University of Liverpool, Liverpool L69 3GJ

DOI:

https://doi.org/10.14311/ppt.2017.3.234

Keywords:

SF6 replacement, SF6 alternative gases, switching arc

Abstract

A high voltage gas blast circuit breaker relies on the high speed gas flow in a nozzle to remove the energy due to Ohmic heating at high current and to provide strong arc cooling during the current zero period to interrupt a fault current. The physical mechanisms that are responsible for the hugely different arc cooling capabilities of two gases (SF6 and air) are studied in the present work and important gas material properties controlling the cooling strength identified.

References

Fifth assessment report (AR5) of the intergovernmental panel on climate change (IPCC), 2013.

H. Katagiri, H. Kasuya, H. Mizoguchi, and S. Yanabu. Investigation of the performance of CF3I gas as a possible substitute for SF6. IEEE Transactions on Dielectrics and Electrical Insulation, 15(5):1424–1429, 2008. doi:10.1109/TDEI.2008.4656252.

H.E. Nechmi, A. Beroual, A. Girodet, and P. Vinson. Fluoronitriles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications. IEEE Transactions on Dielectrics and Electrical Insulation, 23(5):2587–2593, 2016. doi:10.1109/TDEI.2016.7736816.

P. Simka and N. Ranjan. Dielectric strength of C5 perfluoroketone. In 19th International Symposium on High Voltage Engineering, Pilsen, Czech Republic, 2015.

J.D. Mantilla, N. Gariboldi, S. Grob, and M. Claessens. Investigation of the insulation performance of a new gas mixture with extremely low GWP. In Electrical Insulation Conference (EIC), 2014, pages 469–473, 2014. doi:10.1109/EIC.2014.6869432.

A. Beroual and A.M. Haddad. Recent advances in the quest for a new insulation gas with a low impact on the environment to replace sulfur hexafluoride (SF6) gas in high-voltage power network applications. Energies, 10(8):1216, 2017. doi:10.3390/en10081216.

G. Frind. EPRI Report, 284:5, 1977.

P.C. Stoller, M. Seeger, A.A. Iordanidis, and G.V. Naidis. CO2 as an arc interruption medium in gas circuit breakers. IEEE Transactions on Plasma Science, 41(8):2359–2369, 2013. doi:10.1109/TPS.2013.2259183.

G. Frind and J.A. Rich. Recovery speed of axial flow gas blast interrupter: Dependence on pressure and di/dt for air and SF6. IEEE Transactions on Power Apparatus and Systems, 5:1675–1684, 1974. doi:10.1109/TPAS.1974.293900.

L.S. Frost and R.W. Liebermann. Composition and transport properties of SF6 and their use in a simplified enthalpy flow arc model. Proceedings of the IEEE, 59(4):474–485, 1971. doi:10.1109/PROC.1971.8206.

J.M. Yos. AVCO Technical Release, 28, 1967.

P.J. Shayler and M.T.C. Fang. The transport and thermodynamic properties of a copper-nitrogen mixture. Journal of Physics D: Applied Physics, 10(12):1659–1670, 1977. doi:10.1088/0022-3727/10/12/015.

J.F. Zhang, M.T.C. Fang, and D.B. Newland. Theoretical investigation of a 2 ka dc nitrogen arc in a supersonic nozzle. Journal of Physics D: Applied Physics, 20(3):368–379, 1987. doi:10.1088/0022-3727/20/3/020.

R.W. Liebermann and J.J. Lowke. Radiation emission coefficients for sulfur hexafluoride arc plasmas. Journal of quantitative spectroscopy and radiative transfer, 16(3):253–264, 1976. doi:10.1016/0022-4073(76)90067-4.

J.J. Lowke. Predictions of arc temperature profiles using approximate emission coefficients for radiation losses. Journal of Quantitative Spectroscopy and Radiative Transfer, 14(2):111–122, 1974. doi:10.1016/0022-4073(74)90004-1.

P.J. Shayler and M.T.C. Fang. Radiation transport in wall-stabilised nitrogen arcs. Journal of Physics D: Applied Physics, 11(12):1743–1756, 1978. doi:10.1088/0022-3727/11/12/013.

Q. Zhang, J.D. Yan, and M.T.C. Fang. The modelling of an SF6 arc in a supersonic nozzle: I. cold flow features and dc arc characteristics. Journal of Physics D: Applied Physics, 47(21):215201, 2014. doi:10.1088/0022-3727/47/21/215201.

M.T.C. Fang, S. Ramakrishnan, and H.K. Messerle. Scaling laws for gas-blast circuit-breaker arcs during the high current phase. IEEE Transactions on Plasma Science, 8(4):357–362, 1980. doi:10.1109/TPS.1980.4317340.

Downloads

Published

2017-02-12

Issue

Section

Review Papers