Modelling of Metal Oxide Surge Arresters in Simulation Software DYNAST

Authors

  • Vladislav Síťař Jan Evangelista Purkyne University Ústí nad Labem
  • Jan Veleba ABB s.r.o. / Operation Center Czech Republic Ostrava

DOI:

https://doi.org/10.14311/TEE.2017.1.021

Abstract

This paper describes the possibilities for mathematical modelling of gap-less surge arresters in simulation software DYNAST. This tool does not belong to standard modelling softwares in the field of electric power engineering. However, it may provide some key advantages when compared to more frequently used softwares such as EMTP-ATP and MATLAB-Simulink. Description of the metal oxide varistor modelling at temporary and switching overvoltages, fast-front states, and lightning strokes is presented. More information about the defined internal structure of surge arrester models and ways for implementing respective V-I characteristics are provided. To verify the correct behaviour of the models, both slow and fast overvoltage scenarios are simulated and evaluated.

Author Biographies

Vladislav Síťař, Jan Evangelista Purkyne University Ústí nad Labem

Department of Energy and Electrical Engineering

Jan Veleba, ABB s.r.o. / Operation Center Czech Republic Ostrava

Process Automation Division

References

H. Mann, Využití počítače při elektrotechnických návrzích, 1st ed., Praha: SNTL, 1984.

IEEE Working Group 3.4.11, “Modeling of metal oxide surge arrester,” IEEE Transaction on Power Delivery, vol. 7, no. 1, Jan. 1992, pp. 302-309. [Online]. Available on: DOI: 10.1109/61.108922 [Accessed: 3rd Nov. 2015].

P. Pinceti and M. Giannettoni, “A simplified model for zinc oxide surge arrester,” IEEE Transaction on Power Delivery, vol. 14, no. 2, Apr. 1999, pp. 393-398. [Online]. Available on: DOI: 10.1109/61.754079 [Accessed: 3rd Nov. 2015].

F. Fernández and R. Díaz, “Metal-oxide surge arrester model for fast transient simulations,” In proceedings of the International Conference on Power Systems Transients (IPST), Rio de Janeiro, 2001, pp. 1-6. [Online]. Available on: http://www.ipstconf.org/ papers/Proc_IPST2001/01IPST056.pdf [Accessed: 3rd Nov. 2015].

P.M. Miguel, “Comparison of Surge Arrester Models,” IEEE Transaction on Power Delivery, vol. 29, no. 1, Sep. 2013, pp. 21-28. [Online]. Available on: DOI: 10.1109/TPWRD.2013.2279835 [Accessed: 3rd Nov. 2015].

K.P. Mardira and T.K. Saha, “A simplified lightning model for metal oxide surge arrester,” The University of Queensland –Australia, 2011. [Online]. Available on: https://espace. library.uq.edu.au/view/UQ:9806/A_Simplified_Lig.pdf [Accessed: 4th Nov. 2015].

S. Tominaga, K. Azumi, Y. Shibuya, M. Imataki, Y. Fujiwara, and S. Nishida, “Protective Performance of Metal Oxide Surge Arrester Based on the Dynamic V-I characteristics,” IEEE Transaction on Power Apparatus and Systems, vol. PAS-98, no. 6, 1979, pp. 1860-1871. [Online]. Available on: DOI: 10.1109/TPAS.1979.319359 [Accessed: 6th Jan. 2016].

I. Kim, T. Funabashi, H. Sasaki, T. Hagiwara, and M. Kobayashi, “Study of ZnO arrester model for steep front wave,” IEEE Transactions on Power Delivery, vol. 11, no. 2, 1996, pp. 834-841. [Online]. Available on: DOI: 10.1109/61.489341 [Accessed: 6th Jan. 2016].

M. Popov, L. van der Sluis, and G.C. Paap, “Application of a New Surge Arrester Model in Protection Studies Concerning Switching Surges,” IEEE Power Engineering Review, vol. 22, no. 9, 2002, pp. 52-53. [Online]. Available on: DOI: 10.1109/MPER.2002.4312562 [Accessed: 6th Jan. 2016].

A. Bayadi, N. Harid, K. Zehar, and S. Belkhait, “Simulation of metal oxide surge arrester dynamic behavior under fast transients,” In proceedings of the International Conference on Power Systems Transients (IPST), New Orleans, 2003, pp. 1-6. [Online]. Available on: http://ipstconf.org/papers/Proc_IPST2003/03IPST14b-01.pdf [Accessed: 3rd Nov. 2015].

A. Meister, R.A. Shayany, and M.A.G. Oliveira, “Comparison of metal oxide surge arrester models in overvoltage studies,” International Journal of Engineering, Science and Technology, vol. 3, no. 11, 2011, pp. 35-45. [Online]. Available on: DOI: http://dx.doi.org/10.4314/ijest.v3i11.4S [Accessed: 3rd Nov. 2015].

D. Lovrič, S. Vujevič, and T. Modrič, “Comparison of Different Metal Oxide Surge Arrester Models,” International Journal of Emerging Science, vol. 1, no. 4, Dec. 2011, pp. 545-554. [Online]. Available on: http://journaldatabase.info/articles/comparison_ different_metal_oxide_surge.html [Accessed: 3rd Nov. 2015].

S.A. Ali, “Design of Lightning Arresters for Electrical Power Systems Protection,” Advances in Electrical and Electronic Engineering (AEEE), vol. 11, no. 6, Dec. 2013, pp. 433-432. [Online]. Available on: DOI: 10.15598/aeee.v11i6.661 [Accessed: 3rd Nov. 2015].

C.A. Christodoulou, F.A. Assimakopoulou, I.F. Gonos, and I.A. Stathopulos, “Simulation of Metal Oxide Surge Arresters Behavior,” IEEE Power Electronics Specialists Conference (PESC), June 2008, pp. 1862-1866. [Online]. Available on: DOI: 10.1109/PESC.2008.4592215 [Accessed: 3rd Nov. 2015].

S. Dau, “Modelling of metal oxide surge arresters as elements of overvoltage protection systems,” International Conference on Lightning Protection (ICLP), Vienna, Sep. 2012, pp. 1-5. [Online]. Available on: DOI: 10.1109/ICLP.2012.6344236 [Accessed: 6th Nov. 2015].

ČSN EN 60060-1. Technika zkoušek vysokým napětím – část 1: Obecné definice a požadavky na zkoušky.

IEC 60099-4, ed. 3.0. Metal-oxide surge arresters without gaps for a.c. systems.

IEEE TF on Fast Front Transients, “Modeling guidelines for fast transients,” IEEE Transaction on Power Delivery, vol. 11, no. 1, Jan. 1996, pp. 493-506. [Online]. Available on: DOI: 10.1109/ 61.484134 [Accessed: 3rd Nov. 2015].

K. Patil and C. Grande-Moran, “Modeling Metal Oxide Varistors (MOV) in Short Circuit Calculations,” SIEMENS – Power Technology, no. 111, March 2012, pp. 1-6. [Online]. Available on: http://w3.usa.siemens.com [Accessed: 6th Nov. 2015].

Homepage of MATLAB-Simulink. [Online]. Available on: http://www.mathworks.com [Accessed: 6th Nov. 2015].

H. Mann and M. Ševčenko, Snadné počítačové modelování dynamických soustav. Praha: ČVUT, 2008.

Homepage of DYNAST. [Online]. Available on: http://virtual.cvut. cz/dynastcz/ [Accessed: 2nd Nov. 2015].

L. Noháčová and K. Noháč, “Nové modely pro elektroenergetiku simulačního nástroje DYNAST,” Proceedings of the 13th International Scientific Conference Electric Power Engineering (EPE), pp. 201–204, Brno 2012.

L. Noháčová and K. Noháč, “Nové možnosti přístupu k modelování v elektroenergetice,” Proceedings of the 10th International Scientific Conference Electric Power Engineering (EPE), pp. 1–3, Ostrava 2009.

J. Woodworth, “Understanding Arrester Discharge Voltage,” ArresterWorks - ArresterFacts 013, Dec. 2008, pp. 1-8. [Online]. Available on: http://www.arresterworks.com [Accessed: 6th Nov. 2015].

J. Woodworth, “Understanding the Arrester Energy Handling Issue,” ArresterWorks - ArresterFacts 012, Nov. 2008, pp. 1-6. [Online]. Available on: http://www.arresterworks.com [Accessed: 6th Jan. 2016].

Metal Oxide Varistors – Metallized square disc, SIOV-D40K275Q, EPCOS. Internal documentation of SALTEK Company.

V. Síťař, K. Noháč, U. Schmidt, and J. Veleba, “Modeling of surge arresters during temporary overvoltage conditions in alternative simulation tools,” Proceedings of the 5th International Scientific Conference Control of Power Systems, pp. 1-6, Tatranské Matliare 2014.

V. Síťař, Tvorba modelovacích analytických nástrojů v oboru elektroenergetiky s důrazem na oblast spolehlivosti a provozu venkovních vedení, Dissertation, University of West Bohemia, pp. 61-77, Pilsen, 2016.

Z. Piatek, B. Baron, T. Szczegielniak, D. Kusiak, and A. Pasierbek, “Self inductance of long conductor of rectangular cross section,” Przeglad Elektrotechniczny, vol. 8, no. 88, 2012, pp. 323-326. [Online]. Available on: http://www.red.pe.org.pl [Accessed: 7th Jan. 2016].

Downloads

Published

2020-03-30

Issue

Section

Articles