A Hybrid Model to Predict Localised Cracks of Reinforced Concrete Slabs in Fire
DOI:
https://doi.org/10.14311/asfe.2015.002Abstract
This paper presents a robust hybrid finite element procedure for predicting the large individual cracks within reinforced concrete floor slabs at elevated temperatures. For modelling the cracks formations and propagations within the floor slabs, the smeared crack model is used for modelling early stages of crack evolution, and then the ‘delayed extended finite element method (D-XFEM) is proposed for capturing individual big cracks within the floor slabs. The new model has been validated against previous fire test results. A series of parametric studies has been conducted on a composite floor to understand the influences of different protection conditions of the support steel beams on both global responses and cracking patterns of the composite floor under fire conditions.Downloads
Published
Issue
Section
License
Authors who publish with ASFE agree to the following terms:
1. Authors retain copyright and grant the ASFE right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).