BIPHASIC CALCIUM PHOSPHATE SCAFFOLDS DERIVED FROM HYDROTHERMALLY SYNTHESIZED POWDERS

Ana Sofia Neto, José Maria Ferreira

Abstract


Biphasic calcium phosphate (BCP) scaffolds were successfully produced by robocasting. The BCP powder was prepared by hydrothermal synthesis (150°C for 4 h) and calcined at 1000°C. The as-obtained powder was milled to obtain A suitable particle size distribution (PSD) for optimizing the rheological properties of the suspensions and pastes prepared thereof. Scaffolds with different pore dimensions (300x300, 500x500, 250x500 and 300x600 µm) were prepared by extruding the pastes through 410 µm diameter nozzles. The green scaffolds were dried and posteriorly sintered at 1100°C. The compressive strength of the sintered scaffolds was well within the range of the mechanical properties reported from cancellous bone, being intrinsically related with the particle size distribution. Moreover, the obtained scaffolds demonstrated to have good biomineralization ability. The obtained scaffolds by robocasting revealed to possess promising features for their applications in bone regeneration and tissue engineering.


Keywords


Biphasic calcium phosphates; hydrothermal synthesis; robocasting

Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 0301-5491 (Print)
ISSN 2336-5552 (Online)
Published by the Czech Society for Biomedical Engineering and Medical Informatics and the Faculty of Biomedical Engineering, Czech Technical University in Prague.