REDUCING VENTILATOR ALARMS THROUGH DECREASED RAINOUT IN VENTILATOR CIRCUITS: A BENCH STUDY

Authors

  • Danielle Bayoro Vyaire Medical
  • Matthew Meyer
  • Daniel Healy
  • Herman Groepenhoff
  • Andreas Waldmann
  • Edward A. Rose Vyaire Medical
  • Michael J. Pedro Vyaire Medical

DOI:

https://doi.org/10.14311/CTJ.2022.2.01

Abstract

Alarm fatigue is a significant problem in healthcare, particularly in high acuity settings such as intensive care, surgery, and emergency departments. Alarms are triggered by various devices such as anesthesia machines, ventilators, patient monitors or humidifiers. Heated humidifiers (HH) used with mechanical ventilators, while necessary to prevent other complications associated with mechanical ventilators, may cause condensation in the ventilator circuit, prompting occlusion alarms indicating a risk for the patient. Technological advances in HH circuits may reduce rainout in the circuits and therefore occlusion alarms. Bench experiments measured alarms and rainout of two commercially available humidifiers (AirLife DuoTherm™ and Fisher & Paykel MR850) and four different pediatric and adult patient breathing circuits. The tests examined condensation accumulation in the circuits after 24 hours of low-, nominal-, or high-flow rates of gas at low-, nominal-, and high-ambient temperature settings. Dual-limb designs of adult- and neonate-sized circuits underwent evaluation. Data on alarms was collected for each system. Low temperature and occlusion alarms were less common in DuoTherm vs. MR850 HH circuits (6 vs. 68 alarms, respectively). DuoTherm products accumulated significantly less rainout for both circuit sizes at all ambient temperatures. In general, the set flow rate did not dramatically affect the amount of rainout for adult and infant circuits, but low versus high ambient temperatures yielded increased rainout for all circuit types (p < 0.02). The DuoTherm HH device and patient circuits developed significantly less alarms due to rainout and low temperatures compared to those from MR850 under all the conditions tested. Such reduction in patient alarms should help reduce alarm fatigue among healthcare workers in critical care settings.

Downloads

Published

2022-06-30

Issue

Section

Original Research