NON-INVASIVE PPG-BASED ESTIMATION OF BLOOD GLUCOSE LEVEL
DOI:
https://doi.org/10.14311/CTJ.2023.1.04Abstract
This paper focuses on non-invasive blood glucose determination using photoplethysmographic (PPG) signals, which is crucial for managing diabetes. Diabetes stands as one of the world’s major chronic diseases. Untreated diabetes frequently leads to fatalities. Current self-monitoring techniques for measuring diabetes require invasive procedures such as blood or bodily fluid sampling, which may be very uncomfortable. Hence, there is an opportunity for non-invasive blood glucose monitoring through smart devices capable of measuring PPG signals. The primary goal of this research was to propose methods for glycemic classification into two groups (low and high glycemia) and to predict specific glycemia values using machine learning techniques. Two datasets were created by measuring PPG signals from 16 individuals using two different smart devices – a smart wristband and a smartphone. Simultaneously, the reference blood glucose levels were invasively measured using a glucometer. The PPG signals were preprocessed, and 27 different features were extracted. With the use of feature selection, only 10 relevant features were chosen. Numerous machine learning models were developed. Random Forest (RF) and Support Vector Machine (SVM) with the radial basis function (RBF) kernel performed best in classifying PPG signals into two groups. These models achieved an accuracy of 76% (SVM) and 75% (RF) on the smart wristband test dataset. The functionality of the proposed models was then verified on the smartphone test dataset, where both models achieved similar accuracy: 74% (SVM) and 75% (RF). For predicting specific glycemia values, RF performed best. Mean Absolute Error (MAE) was 1.25 mmol/l on the smart wristband test dataset and 1.37 mmol/l on the smartphone test dataset.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Enikö Vargová, Andrea Němcová, Zuzana Nováková

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of the first publication with the work simultaneously licensed under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in CTJ.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website or ResearchGate) prior to and during the submission process, as it can lead to productive exchanges.
CTJ requires that all of the content of the manuscript has been created by its respective authors or that permission to use a copyrighted material has been obtained by the authors before submitting the manuscript to CTJ. CTJ requires that authors have not used any copyrighted material illegally, as for example a picture from another journal or book, a photo, etc. It is the author’s responsibility to use only materials not violating the copyright law. When in doubt, CTJ may ask the authors to supply the pertinent permission or agreement about the use of a copyrighted material.
The opinions expressed in CTJ articles are those of authors and do not necessarily reflect the views of the publishers or the Czech Society for Biomedical Engineering and Medical Informatics.