ARTERIAL BLOOD PRESSURE WAVEFORM ARTIFACTS DETECTION USING SHORT-TIME FOURIER TRANSFORM
DOI:
https://doi.org/10.14311/CTJ.2024.2.05Abstract
High-frequency waveform recordings of biological signals enable more detailed data analysis and deeper physiological exploration. However, the waveform data—like invasive arterial blood pressure (ABP)—are particularly susceptible to frequent contamination with artifacts that can devalue the subsequent calculations like pressure reactivity index (PRx). This study aimed to verify the ability of the short-time Fourier transform (STFT) based algorithm to detect artifacts in the ABP waveform. Four types of modeled artifacts (rectangular, fast impulse, sawtooth and baseline drift) with different durations and amplitudes were inserted into undisturbed ABP waveforms. Short-time Fourier transform with a 5-second time window is computed on artifact-polluted ABP signals to detect changes in the frequency domain caused by these artifacts. An algorithm with three decision-making rules based on the dominant frequency component, standardized power spectrum, and the value of the second harmonic of the dominant frequency was used. Only segments that passed all three rules were labeled as artifact-free. Results indicated high sensitivity (93.35% and 94.83%) in detecting rectangular and sawtooth artifacts, with specificity exceeding 99% for both. Baseline drift artifact was detected with a low sensitivity of 5.02%, and fast impulse was not detected. This study proposes the application of a short-time Fourier transform-based algorithm to enhance the detection of clinically significant artifacts in arterial blood pressure signals, particularly relevant for PRx and other secondary calculations.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Valeriia Trukhan, Josef Skola, Lenka Horakova, Martin Rozanek
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of the first publication with the work simultaneously licensed under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in CTJ.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website or ResearchGate) prior to and during the submission process, as it can lead to productive exchanges.
CTJ requires that all of the content of the manuscript has been created by its respective authors or that permission to use a copyrighted material has been obtained by the authors before submitting the manuscript to CTJ. CTJ requires that authors have not used any copyrighted material illegally, as for example a picture from another journal or book, a photo, etc. It is the author’s responsibility to use only materials not violating the copyright law. When in doubt, CTJ may ask the authors to supply the pertinent permission or agreement about the use of a copyrighted material.
The opinions expressed in CTJ articles are those of authors and do not necessarily reflect the views of the publishers or the Czech Society for Biomedical Engineering and Medical Informatics.