Study of high-frequency electrodeless mercury capillary discharge in the magnetic field

Authors

  • N. Zorina Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas str. 3, LV–1004, Riga, Latvia
  • G. Revalde Institute of Technical Physics, Riga Technical University, P. Valdena str. 7, LV–1048, Riga, Latvia
  • A. Abola Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas str. 3, LV–1004, Riga, Latvia
  • A. Skudra Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas str. 3, LV–1004, Riga, Latvia
  • R. Gudermanis Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas str. 3, LV–1004, Riga, Latvia

DOI:

https://doi.org/10.14311/ppt.2024.2.39

Keywords:

high-frequency electrodeless lamp, ill-posed inverse task, Zeeman effect, mercury isotope, deconvolution, Zeeman atomic absorption spectrometry

Abstract

We analyzed shapes of Hg 253.7 nm spectral line, emitted from a micro–size electrodeless Hg/Xe capillary lamp in a magnetic field for its usage in Zeeman atomic absorption spectrometry. Measurements for several different lamp positions were conducted. Obtained profiles were presented as a Fredholm integral equation of the first kind and separated from an instrumental function. The gas temperature, the dependence of Zeeman splitting on the intensity of the magnetic field, and the magnetic field’s exact value in the experiment were determined.

References

A. Ganeev, Z. Gavare, V. I. Khutorshikov, et al. High–frequency electrodeless discharge lamps for atomic absorption analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 58(5):879–889, 2003. doi:10.1016/s0584-8547(03)00020-x.

S. Sholupov and A. Ganeyev. Zeeman atomic absorption spectrometry using high frequency modulated light polarization. Spectrochimica Acta Part B: Atomic Spectroscopy, 50(10):1227–1236, 1995. doi:10.1016/0584-8547(95)01316-7.

N. Denisova, E. Bogans, G. Revalde, and J. Skudra. A study of physical processes in microplasma capillary discharges. The European Physical Journal Applied Physics, 56(2):24003, 2011. doi:10.1051/epjap/2011110157.

N. Zorina, G. Revalde, and R. Disch. Deconvolution of the mercury 253.7 nm spectral line shape for the use in absorption spectroscopy. In J. Spigulis, A. Krumins, D. Millers, et al., editors, SPIE Proceedings. SPIE, 2008. doi:10.1117/12.815460.

W. L. Wiese, D. E. Kelleher, and D. R. Paquette. Detailed study of the stark broadening of balmer lines in a high-density plasma. Physical Review A, 6(3):1132–1153, 1972. doi:10.1103/PhysRevA.6.1132.

H. Zhang, C. Hsiech, I. Ishii, et al. Revised, fast, flexible algorithms for determination of electron number densities in plasma discharges. Spectochimica Acta Part B: Atomic Spectroscopy, 49(8):817–828, 1994. doi:10.1016/0584-8547(94)80073-1.

G. Revalde, N. Zorina, A. Skudra, and Z. Gavare. Deconvolution of the line spectra of microsize light sources in the magnetic field. Romanian Reports in Physics, 66(4):1099–1109, 2014.

N. Zorina, A. Skudra, G. Revalde, and Z. Gavare. Comparison of As, Hg and Tl high-frequency electrodeless lamps for detection of environmental pollution. ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference, 1:275–280, 2021. doi:10.17770/etr2021vol1.6529.

H. Kopfermann. Nuclear moments, volume 16. New York, Academic Press, 1958.

M. Witkowski, G. Kowzan, R. Munoz-Rodriguez, et al. Absolute frequency and isotope shift measurements of mercury 1 S0 −3 P1 transition. Optics Express, 27(8):11069, 2019. doi:10.1364/oe.27.011069.

A. Linek, P. Morzyński, and M. Witkowski. Absolute frequency measurement of the 6s12 S0 → 6s6p3 P1F = 3/2 → F ′ = 5/2 201 Hg transition with background–free saturation spectroscopy. Optics Express, 30(24):44103, 2022. doi:10.1364/oe.475986.

S. Frish. Optical spectres of atoms. Gosudarstvennoe izdateljstvo fiziko matematicheskoj literaturi, Russian edition, 1963.

N. Denisova, E. Bogans, G. Revalde, and A. Skudra. Imaging of emitting mercury atom spatial distributions in a capillary discharge lamp by using tomography approach. IEEE Transactions on Plasma Science, 36(4):1188–1189, 2008. doi:10.1109/tps.2008.926967.

Downloads

Published

2024-07-12

Issue

Section

Articles