NUMERICAL ANALYSIS OF A COMPOSITE STEEL BOX GIRDER BRIDGE IN FIRE
DOI:
https://doi.org/10.14311/asfe.2015.006Abstract
Box girder bridges are becoming more common because of their ease of construction, pleasing appearance, and serviceability. Projects with curved configuration and long spans can especially benefit from these advantages. However, the industry lacks a wide range of research on multi-span steel box girder cross-sections and their response to fire events. This poses a major risk to unprotected steel bridges using a box girder design. This paper will discuss a mathematical approach to determining and classifying different failure modes of weathering steel box girder bridges subject to two fire cases. Due to the rapid increase of temperature in the thin steel members, the strength of the steel deteriorates quickly. Results show that different fire locations can greatly affect the forces that act on the individual members of the structure.Downloads
Published
Issue
Section
License
Authors who publish with ASFE agree to the following terms:
1. Authors retain copyright and grant the ASFE right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).