THERMAL INSULATION OF SINGLE LEAF FIRE DOORS, Test results comparison in standard temperature-time fire scenario for different types of doorsets
DOI:
https://doi.org/10.14311/asfe.2015.077Abstract
Fire resistant door assemblies (doors) for pedestrian or industrial traffic with frame, leaf or leaves, rolled or folded curtain etc. are designed for installation in the openings of the building’s vertical internal partitions. The building and its associated equipment shall be designed and made so that in case of fire it ensures the necessary load bearing capacity of the structure for the time specified in national regulations, limitation of fire and smoke propagation within the building, limitation of fire propagation onto the adjacent buildings and evacuation of people, and it provides safety of the rescue teams. The mentioned requirements are not usually considered individually (e.g. ensuring proper evacuation is connected with the structural load bearing capacity, fire and smoke propagation within the building, and rescue team safety), therefore individual elements of buildings can play several roles during a fire.
This also refers to the building elements such as doors which are usually required in terms of design and execution to ensure that in case of fire they shall, for a specific period of time prevent its development from the room or a specific zone where the fire started to other rooms or zones, allow evacuation of people by limiting heat radiation, and facilitate rescue team activities. Therefore, fire doors have a major role in the fulfillment of the rules of buildings fire safety.
This paper discusses the main issues related to the fire resistance of fire doors (tests methodology and way of classification) and presents a comparison of temperature rises on unexposed surface of fire doors test specimens depending on the type of structure and side of fire exposure. Temperature rises have been compared on unexposed surface of timber, aluminum and steel single leaf doorset which have fulfill the requirements of the EI2 30 fire resistance class, in case of the fire acting from the hinge side and the side opposite to the hinges.Downloads
Published
Issue
Section
License
Authors who publish with ASFE agree to the following terms:
1. Authors retain copyright and grant the ASFE right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).