Extension of mathematical background for Nearest Neighbour Analysis in three-dimensional space

Eva Stopková

Abstract


Proceeding deals with development and testing of the module for GRASS GIS [1], based on Nearest Neighbour Analysis. This method can be useful for assessing whether points located in area of interest are distributed randomly, in clusters or separately. The main principle of the method consists of comparing observed average distance between the nearest neighbours r A to average distance between the nearest neighbours r E that is expected in case of randomly distributed points. The result should be statistically tested. The method for two- or three-dimensional space differs in way how to compute r E . Proceeding also describes extension of mathematical background deriving standard deviation of r E , needed in statistical test of analysis result. As disposition of phenomena (e.g. distribution of birds’ nests or plant species) and test results suggest, anisotropic function would repre- sent relationships between points in three-dimensional space better than isotropic function that was used in this work.

Keywords


3D GIS, spatial analysis, Nearest Neighbour Analysis

References


GRASS Development Team (2013): Geographic Resources Analysis Support System (GRASS) Software [computer software]. Open Source Geospatial Foundation Project. Available at: http://grass.osgeo.org.

CLARK, P. J., EVANS, F. C. (2003): Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. In Ecology [online]. Vol. 35, Is. 4. October 1954 [cit. 2013-03-21], pp. 445-453. Available at: https://courses.washington.edu/bio480/Week1-PAPER-Clark_and_Evans1954.pdf. ISSN 0012-9658.

HERTZ, P. (1909): Über den geigenseitigen durchschnittlichen Abstand von Punkten, die mit bekannter mittlerer Dichte im Raume angeordnet sind. In Mathematische Annalen, 67: 387-398. According to: CLARK, P. J., EVANS, F. C. (2003). Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. In Ecology [online]. Vol. 35, Is. 4. October 1954 [cit. 2013-03-21], pp. 445-453. Available at: https://courses.washington.edu/bio480/Week1-PAPER-Clark_and_Evans1954.pdf. ISSN 0012-9658.

CHANDRASEKHAR, S. (1943): The Law of Distribution of the Nearest Neighbor in a Random Distribution of Particles. In Reviews of Modern Physics. Stochastic Problems in Physics and Astronomy. Vol. 15, 1-89, 1943 [cit. 2013-03-21], pp. 86-87. Available at: http://rmp.aps.org/abstract/RMP/v15/i1/p1_1. ISSN 1539-0756.

WEISSTEIN, E. W. (2013): Gamma Function. In MathWorld. A Wolfram Web Resource [online]. 201 [cit. 2013-03-21]. Available at: http://mathworld.wolfram.com/GammaFunction.html.

ESRI (2013): Average Nearest Neighbor [computer software]. In ArcGIS Desktop: Release 10.1, Spatial Statistics Toolbox [cit. 2013-05-14]. Redlands, CA: Environmental Systems Research Institute.

HUGHES, I. G., HASE, T. P. A. (2010): Measurements and their Uncertainities : A practical Guide to Modern Analysis. 1. edition. New York : Oxford University Press Inc., New York, 2010. 136 p. ISBN 978-0-19-956633-4.

ESRI (2012): What is a z-score? What is a p-value? In ArcGIS Help 10.1 [online]. 2012 [cit. 2013-03-21]. Available at: http://resources.arcgis.com/en/help/main/10.1/index.html#/What_is_a_z_score_What_is_a_p_value/005p00000006000000/.

KARPÍŠEK, Z. (2004): Statistické tabulky [Statistical tables]. Institute of Mathematics FSI VUT in Brno [online]. 2004 [cit. 2013-06-03]. Available at: http://mathonline.fme.vutbr.cz/default.aspx?section=2&article=121&highlighttext=tabulky

ESRI (2013). ArcGIS Desktop: Release 10.1. Redlands, CA: Environmental Systems Research Institute.

ESRI (2013): Average Nearest Neighbor (Spatial Statistics). In ArcGIS Help 10.1 [online]. 2013 [cit. 2013-05-14]. Available at: http://resources.arcgis.com/en/help/main/10.1/index.html#//005p00000008000000

NELSON, M. (2007): The Convex Hull. In Computer Science, Web Articles [online]. 2007 [cit. 2013-05-30]. Available at: http://marknelson.us/2007/08/22/convex/

AIME, A., NETELER, M., DUCKE, B., LANDA, M. (2010): v.hull [computer soft- ware]. In Geographic Resources Analysis Support System (GRASS) Software. Available at: http://trac.osgeo.org/grass/wiki/DownloadSource#GRASS7

Wolfram Research, Inc. (2008). Mathematica [computer software]. Version 7.0. Champaign : Wolfram Research, Inc.

MathWorks, Inc. (2010). MATLAB [computer software]. Version 7.11.0. Natick, Massachusetts: The MathWorks, Inc.

McCAULEY, J. D., LANDA, M. (2010): v.random [computer software]. In Geographic Resources Analysis Support System (GRASS) Software. Available at: http://trac.osgeo.org/grass/wiki/DownloadSource#GRASS7

VALLO, D. et al. (2012): Geometria telies. . . všeobecne a pútavo [Geometry of bodies. . . in general and grippingly]. Faculty of Natural Sciences, Constantine the Philosopher University in Nitra [online]. 2012 [cit. 2013-05-30]. Available at: http://www.km.fpv.ukf.sk/admin/upload_pdf/20121108_145712__0.pdf. ISBN 978-80-558-0106-3.

ZEYL, D. (2013) Plato’s Timaeus. In The Stanford Encyclopedia of Philosophy (Spring 2013 Edition) [online], Edward N. Zalta (ed.). [cit. 2013-05-30].Available at: http://plato.stanford.edu/archives/spr2013/entries/plato-timaeus/.

WEISSTEIN, E. W. (2013): Archimedean Solid. In MathWorld. A Wolfram Web Resource [online]. 2013 [cit. 2013-05-30]. Available at: http://mathworld.wolfram.com/ArchimedeanSolid.html.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.