Evaluation of gravity field model EIGEN-6C4 by means of various functions of gravity potential, and by GNSS/levelling


  • Jan Kostelecký Research Institute of Geodesy, Topography and Cartography (VÚGTK) p.r.i., CZ - 20566 Zdiby Institute of Geodesy and Mining Surveying, HGF TU Ostrava CZ – 708 33 Ostrava-Poruba, Czech Republic http://orcid.org/0000-0002-8053-6184
  • Jaroslav Klokočník Astronomical Institute, Academy of Sciences of the Czech Republic, p.r.i. (ASÚ), CZ – 251 65 Ondřejov Observatory
  • Blažej Bucha Department of Theoretical Geodesy, Faculty of Civil Engineering, STU in Bratislava, SK – 81005 Bratislava
  • Aleš Bezděk Astronomical Institute, Academy of Sciences of the Czech Republic, p.r.i. (ASÚ), CZ – 251 65 Ondřejov Observatory http://orcid.org/0000-0003-2790-2664
  • Christoph Förste GFZ German Research Centre for Geosciences, Dept. Geodesy and Remote Sensing, Telegrafenberg, D – 14473 Potsdam, Germany




Gravity field models, EGM 2008, Eigen-6C4


The combined gravity field model EIGEN-6C4 (Förste et al., 2014) is the latest combined global gravity field model of GFZ Potsdam and GRGS Toulouse. EIGEN-6C4 has been generated including the satellite gravity gradiometry data of the entire GOCE mission (November 2009 till October 2013) and is of maximum spherical degree and order 2190. In this study EIGEN-6C4 has been compared with EGM2008 to its maximum degree and order via gravity disturbances and Tzz part of the Marussi tensor of the second derivatives of the disturbing potential. The emphasis is put on such areas where GOCE data (complete set of gradiometry measurements after reductions) in EIGEN-6C4 obviously contributes to an improvement of the gravity field description. 

GNSS/levelling geoid heights are independent data source for the evaluation of gravity field models. Therefore, we use the GNSS/levelling data sets over the territories of Europe, Czech Republic and Slovakia for the evaluation of EIGEN-6C4 w.r.t. EGM2008.


Bruinsma SL, Förste Ch, Abrikosov O, Lemoine J-M, Marty J-Ch, Mulet S, Rio M-H, Bonvalot S (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data, Geoph. Res. Lett., DOI 10.1002/2014GL062045

Bucha B, Janák J (2013): A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders, Computers & Geosciences, 56, p. 186-196.

Denker H, Barriot J-P, Barzaghi R, Fairhead D, Forsberg R, Ihde J, Kenyeres A, Marti U, Sarrailh M, Tziavos I N (2008) The Development of the European Gravimetric Geoid Model EGG07. Institut für Erdmessung, Leibniz Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany.

Förste C, Bruinsma S, Abrykosov O, Lemoine J-M, et al (2014) Tha latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse, 5th GOCE User Workshop, Paris 25 – 28 Nov. 2014

Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, Steiger C, Pineiro J, da Costa A (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission, J Geod 85: 749–758, doi: 10.1007/s00190-011-0498-3SATELLTE.

Kalvoda J, Klokočník J, Kostelecký J, Bezděk A (2013) A. Mass distribution of Earth landforms determined by aspects of the geopotential as computed from the global gravity field model EGM 2008. Acta Univ. Carolinae-Geogr., 48, 17-25. ISSN 0300-5402.

Klokočník J, Kalvoda J, Kostelecký J, Bezděk A (2013) Gravity Disturbances, Marussi Tensor, Invariants and Other Functions of the Geopotential Represented by EGM 2008, Presented at ESA Living Planet Symp. 9-13 Sept. 2013, Edinburgh, Scotland. Publ. in: August 2014: J Earth Sci. Res 2, 88–101.

Kostelecký J, Cimbálník M, Čepek A, Douša J, Filler V, Kostelecký J. jr., Nágl J, Pešek I, Šimek J (2012) Realization of S-JTSK/05. Geodetický a kartografický obzor 58/100, 7, 145–154 (in Czech).

Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) EGM2008: An overview of its development and evaluation, National Geospatial-Intelligence Agency, USA, presented at conference: Gravity, Geoid and Earth Observation 2008, Chania, Crete, Greece, 23–27 June.

Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM 2008), J Geophys Res 17: B04406, doi:10.1029/2011JB008916.

Reigber C, Luehr H, Schwintzer P (2002) Goce gravitational gradiometry. J Geod 85:777–790. doi:10.1007/s00190-011-0500-0

Shako R, Förste C, Abrikosov O, Bruinsma SL, Marty J-C, Lemoine J-M, Flechtner F, Neumayer KH and Dahle C.(2013), EIGEN-6C: A High-Resolution Global Gravity Combination Model Including GOCE Data, in F. Flechtner et al. (eds.), Observation of the System Earth from Space – CHAMP, GRACE, GOCE and future missions, Advanced Technologies in Earth Sciences, DOI: 10.1007/978-3-642-32135-1_20, Springer-Verlag Berlin Heidelberg 2013

Zeman A, Kostelecký J, Kostelecký J jr, Ryšavý V (2007) Vertical component of the Earth's surface movement in the region of Central Europe (Czech Republic) from the results of satellite geodesy methods and their comparison with the results of repeated terrestrial geodetic methods. Poster presentation at the AGU 2007 Fall meeting.