Improving the production process of silicon nanoparticle and quartz microlens

Authors

  • Muaath J. Mahmoud Scientific Research Commission, Jadriyah, 10070 Baghdad, Iraq
  • Bassam G. Rasheed Al-Nahrain University, College of Engineering, Laser & Optoelectronics Engineering Department, Jadriyah, 10072 Baghdad, Iraq
  • Muammel M. Hanon Middle Technical University, Baquba Technical Institute, Muasker Al Rashid Street, 10074 Baghdad, Iraq https://orcid.org/0000-0003-4811-5723

DOI:

https://doi.org/10.14311/AP.2025.65.0406

Keywords:

quartz microlens, silicon nanoparticls, laser microprocessing, box Behnken design, ANOVA analysis

Abstract

This study presents a comprehensive investigation into advanced laser micro/nano machining techniques, utilising three distinct laser sources: a Q-switched Nd:YAG laser, a fibre laser, and a CO2 laser. Notably, the creation of remarkably stable silicon nanoparticles was achieved, opening up promising avenues for new applications. The potential of quartz sheets was exploited to produce spherical microlens arrays, thereby demonstrating the precision of optical element engineering. The distribution of surface and subsurface temperatures for both silicon and quartz materials during laser processing was determined through an in-depth thermal analysis facilitated by COMSOL software. Notably, peak temperatures of 5 700 K and 2 630 K were achieved for silicon and quartz, respectively, highlighting the effectiveness of the laser methodologies employed. Numerical optimisations were conducted using Design of Experiments (DOE) software to enhance silicon nanoparticle production, yielding nanoparticles with a remarkable stability parameter of 33.5 mV. Furthermore, notable outcomes were achieved in the production of quartz microlenses with a numerical aperture of 0.494 and a surface roughness of 4.5 nm. The controllable and precise nature of the laser micro/nano machining techniques enables applications in optoelectronics and advanced biological imaging. The exceptional properties of the engineered silicon nanoparticles and microlens arrays demonstrate their potential across various scientific and technological domains.

Downloads

Download data is not yet available.

References

L. Rihakova, H. Chmelickova. Laser micromachining of glass, silicon, and ceramics. A review. European International Journal of Science and Technology 4(7):41–49, 2015.

J. Wang, F. Fang, H. An, et al. Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales. International Journal of Extreme Manufacturing 5(1):012005, 2023. https://doi.org/10.1088/2631-7990/acb134

S. N. Grigoriev, M. A. Volosova, A. A. Okunkova. Advances in laser materials processing. Metals 12(6):917, 2022. https://doi.org/10.3390/met12060917

H. Minghui. Laser-material interaction and its applications in surface micro/nanoprocessing. AIP Conference Proceedings 1278(1):293–302, 2010. https://doi.org/10.1063/1.3507115

F. A. Lasagni, A. F. Lasagni (eds.). Fabrication and characterization in the micro-nano range. Advanced Structured Materials. Springer Berlin, Heidelberg, Germany, 2011. https://doi.org/10.1007/978-3-642-17782-8

W. A. Ghaly, H. T. Mohsen. Laser-induced silicon nanocolumns by ablation technique. Journal of Radiation Research and Applied Sciences 13(1):398–405, 2020. https://doi.org/10.1080/16878507.2020.1740395

M. J. Mahmoud, B. G. Rasheed. Synthesis of nano silicon using lasers. International Journal of Nanoelectronics and Materials 17(1):28–34, 2024. https://doi.org/10.58915/ijneam.v17i1.449

C. Gaudiuso, A. Volpe, A. Ancona. Single-pass direct laser cutting of quartz by IR femtosecond pulses. In U. Klotzbach, A. Watanabe, R. Kling (eds.), Laserbased Micro- and Nanoprocessing XV, vol. 11674, p. 116740E. International Society for Optics and Photonics, SPIE, 2021. https://doi.org/10.1117/12.2577177

T. D. Sherpa, B. B. Pradhan. Micro-grooving of silicon wafer by Nd:YAG laser beam machining. IOP Conference Series: Materials Science and Engineering 377(1):012219, 2018. https://doi.org/10.1088/1757-899X/377/1/012219

I. Sopyan, D. Gozali, S. Sriwidodo, R. K. Guntina. Design-expert software (DOE): An application tool for optimization in pharmaceutical preparations formulation. International Journal of Applied Pharmaceutics 14(4):55–63, 2022. https://doi.org/10.22159/ijap.2022v14i4.45144

R. Tewari, M. K. Singh, S. Zafar, S. Powar. Parametric optimization of laser drilling of microwave-processed kenaf/HDPE composite. Polymers and Polymer Composites 29(3):176–187, 2021. https://doi.org/10.1177/0967391120905705

S. Theeda, B. B. Ravichander, S. H. Jagdale, G. Kumar. Optimization of laser process parameters using machine learning algorithms and performance comparison. In Proceedings of the 33rd Annual International Solid Freeform Fabrication Symposium, pp. 1581–1592. 2022. https://doi.org/10.26153/tsw/44608

Z. Zheng, Y. Ma, Z. Wang, et al. Dual-method characterization and optimization of drilling parameters for picosecond laser drilling quality in CFRP. Polymers 16(18):2603, 2024. https://doi.org/10.3390/polym16182603

A. R. A. Aziz, S. A. Aziz. Application of Box Behnken design to optimize the parameters for Kenaf-epoxy as noise absorber. IOP Conference Series: Materials Science and Engineering 454(1):012001, 2018. https://doi.org/10.1088/1757-899X/454/1/012001

R. Intartaglia, K. Bagga, M. Scotto, et al. Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Optical Materials Express 2(5):510–518, 2012. https://doi.org/10.1364/OME.2.000510

W. R. Runyan. Silicon semiconductor technology. McGraw-Hill, New York, USA, 1965.

M. B. Larosi, J. del V. García, A. R. Rodríguez. Laser synthesis of nanomaterials. Nanomaterials 12(17):2903, 2022. https://doi.org/10.3390/nano12172903

M. J. Mahmoud, B. G. Rasheed. Fabrication of quartz microlenses using laser ablation. Instrumentation Science & Technology 52(6):637–646, 2024. https://doi.org/10.1080/10739149.2024.2305198

P. Chewchinda, T. Tsuge, H. Funakubo, et al. Laser wavelength effect on size and morphology of silicon nanoparticles prepared by laser ablation in liquid. Japanese Journal of Applied Physics 52(2R):025001, 2013. https://doi.org/10.7567/JJAP.52.025001

M. J. Mahmoud, B. G. Rasheed, M. M. Hanon. Optimization of laser micro/nano processing of silicon and quartz. International Journal of Nanoelectronics and Materials 17(June):93–100, 2024. https://doi.org/10.58915/ijneam.v17iJune.840

L. A. J. Garvie, P. Rez, J. R. Alvarez, et al. Bonding in alpha-quartz (SiO2): A view of the unoccupied states. American Mineralogist 85(5–6):732–738, 2000. https://doi.org/doi:10.2138/am-2000-5-611

H. K. Hasan. Analysis of the effecting parameters on laser cutting process by using response surface methodology (RSM) method. Journal of Achievements in Materials and Manufacturing Engineering 110(2):59–66, 2022. https://doi.org/10.5604/01.3001.0015.7044

J. Wu, C. Zhang, P. Jiang, et al. A prediction approach of fiber laser surface treatment using ensemble of metamodels considering energy consumption and processing quality. Green Manufacturing Open 1(1):3, 2023. https://doi.org/10.20517/gmo.2022.04

D. Leahu, C. Petrianu, G. Nagit. Quality control and optimization of a laser cutting system for cutting 10mm mild steel using DOE software. International Journal of Modern Manufacturing Technologies 8(1):7–11, 2016.

S. Singh, N. Yaragatti, M. Doddamani, et al. Drilling parameter optimization of cenosphere/HDPE syntactic foam using CO2 laser. Journal of Manufacturing Processes 80:28–42, 2022. https://doi.org/10.1016/j.jmapro.2022.05.040

D. Teixidor, I. Ferrer, J. Ciurana, T. Özel. Optimization of process parameters for pulsed laser milling of micro-channels on AISI H13 tool steel. Robotics and Computer-Integrated Manufacturing 29(1):209–218, 2013. https://doi.org/10.1016/j.rcim.2012.05.005

Downloads

Published

2025-09-10

Issue

Section

Articles

How to Cite

J. Mahmoud, M., G. Rasheed, B., & M. Hanon, M. (2025). Improving the production process of silicon nanoparticle and quartz microlens. Acta Polytechnica, 65(4), 406-419. https://doi.org/10.14311/AP.2025.65.0406