Comparison between the Wilhelmy surface tension measurement method and the pendant drop shape analysis method

Authors

  • Estela Cristina Cavalcante de Farias National Institute of Metrology, Quality and Technology (INMETRO), Av. Nossa Senhora das Graças 50, Xerém, Duque de Caxias, 25250-020 Rio de Janeiro, Brazil
  • Ricardo Kropf Santos Fermam National Institute of Metrology, Quality and Technology (INMETRO), Av. Nossa Senhora das Graças 50, Xerém, Duque de Caxias, 25250-020 Rio de Janeiro, Brazil
  • Amsterdam de J. Souza Marques de Mendonça National Institute of Metrology, Quality and Technology (INMETRO), Av. Nossa Senhora das Graças 50, Xerém, Duque de Caxias, 25250-020 Rio de Janeiro, Brazil

DOI:

https://doi.org/10.14311/AP.2025.65.0276

Keywords:

surface tension, Wilhelmy method, drop shape analysis method

Abstract

Surface tension plays an essential role in various laboratory and industrial processes. The Fluid Metrology Laboratory (Laflu) of the National Institute of Metrology, Quality and Technology (Inmetro) uses the Wilhelmy and DuNoüy methods and has a tensiometer for determining surface tension by the drop shape analysis method in use. One way to ensure the reliability of surface tension measurement results is to compare the methods used. A comparison was made between the Wilhelmy method and the drop shape analysis method. The comparison involved measurements of the surface tension of these liquids: bidistilled water, n-dodecane, and Perfluorocarbon (FC-40), and used the calculation of the Normalized Error (EN), presenting results according to acompatible criterion. Analysing the uncertainties involved, the contribution of the uncertainty of the regression used in the correction of the tensiometer indication was the most relevant.

Downloads

Download data is not yet available.

References

W.-B. Liu, D.-J. Ma, M.-Y. Zhang, et al. A new surface tension formulation in smoothed particle hydrodynamics for free-surface flows. Journal of Computational Physics 439:110203, 2021. https://doi.org/10.1016/j.jcp.2021.110203

L. F. Ramírez-Verduzco, A. Romero-Martínez, A. Trejo. Prediction of the surface tension, surface concentration, and the relative Gibbs adsorption isotherm of binary liquid systems. Fluid Phase Equilibria 246(1–2):119–130, 2006. https://doi.org/10.1016/j.fluid.2006.05.026

B.-B. Lee, P. Ravindra, E.-S. Chan. New drop weight analysis for surface tension determination of liquids. Colloids and Surfaces A: Physicochemical and Engineering Aspects 332(2–3):112–120, 2009. https://doi.org/10.1016/j.colsurfa.2008.09.003

A. Gajewski. A couple new ways of surface tension determination. International Journal of Heat and Mass Transfer 115:909–917, 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.050

H. Tang, X. Cheng. Measurement of liquid surface tension by fitting the lying droplet profile. Measurement 188:110379, 2022. https://doi.org/10.1016/j.measurement.2021.110379

J. D. Berry, M. J. Neeson, R. R. Dagastine, et al. Measurement of surface and interfacial tension using pendant drop tensiometry. Journal of Colloid and Interface Science 454:226–237, 2015. https://doi.org/10.1016/j.jcis.2015.05.012

F. K. Hansen. Surface tension by image analysis: Fast and automatic measurements of pendant and sessile drops and bubbles. Journal of Colloid and Interface Science 160(1):209–217, 1993. https://doi.org/10.1006/jcis.1993.1386

J. J. P. dos Santos Junior, R. G. Pereira, A. J. S. M. de Mendonça, et al. Determination of density, isobaric thermal expansivity coefficient and isothermal compressibility coefficient correlations for n-dodecane and n-nonane, as a function of temperature and pressure. International Journal of Thermophysics 43(7):107, 2022. https://doi.org/10.1007/s10765-022-03024-x

J. J. P. dos Santos Junior, R. G. Pereira, M. Rosendahl, et al. Measurements and correlations of density, isothermal compressibility factor, and thermal expansion coefficient of anhydrous ethanol fuel as a function of temperature and pressure. International Journal of Thermophysics 42(6):78, 2021. https://doi.org/10.1007/s10765-021-02825-w

L. Sampaio, M. Rosendahl Avelino, L. Tarelho. On the microvolume measurement from 0.1 μL to 100 μL using a micropipette. Metrologia 2023.

J. J. P. Santos Junior, R. Pereira, M. Rosendahl, et al. Inmetro hydrostatic weighing system – determination of solids volume. Journal of Physics: Conference Series 1044(1):012036, 2018. https://doi.org/10.1088/1742-6596/1044/1/012036

S. R. Moura, A. Furtado, O. Pellegrino, et al. Surface tension measurements – A comparative study. Acta IMEKO 12(4):1–6, 2023. https://doi.org/10.21014/actaimeko.v12i4.1418

Inmetro. DOQ-CGCRE-008. Orientação sobre validação de métodos analíticos. 8a revisão [In Portuguese; DOQ-CGCRE-008. Guidance on validation of analytical methods. 8th revision], 2020.

Inmetro. Dinâmica de fluidos [In Portuguese; Fluid dynamics], 2024. [2024-04-05]. https://www.gov.br/inmetro/pt-br/assuntos/metrologiacientifica/laboratorios/dinamica-de-fluidos

S. M. I. Saad, A. W. Neumann. Axisymmetric drop shape analysis (ADSA): An outline. Advances in Colloid and Interface Science 238:62–87, 2016. https://doi.org/10.1016/j.cis.2016.11.001

Working Group 1 of the Joint Committee for Guides in Metrology (JCGM/WG 1). Evaluation of measurement data – Guide to the expression of uncertainty in measurement. Tech. Rep. JCGM 100:2008, JCGM, 2008.

Downloads

Published

2025-07-09

Issue

Section

Articles

How to Cite

Cavalcante de Farias, E. C., Kropf Santos Fermam, R., & de Mendonça, A. de J. S. M. (2025). Comparison between the Wilhelmy surface tension measurement method and the pendant drop shape analysis method. Acta Polytechnica, 65(3), 276–281. https://doi.org/10.14311/AP.2025.65.0276