Analysis of surface roughness and machining performance of AZ91 magnesium alloy cut by WEDM

Authors

  • Levent Urtekin Kırşehir Ahi Evran University, Faculty of Engineering and Architecture, Department of Mechanical Engineering, 40100 Kırşehir, Turkey https://orcid.org/0000-0003-4348-4749
  • Faik Yılan Kırşehir Ahi Evran University, Faculty of Engineering and Architecture, Department of Mechanical Engineering, 40100 Kırşehir, Turkey https://orcid.org/0000-0001-7166-8604
  • İbrahim Baki Şahin Kırşehir Ahi Evran University, Faculty of Engineering and Architecture, Department of Mechanical Engineering, 40100 Kırşehir, Turkey https://orcid.org/0000-0001-8090-9748
  • Kadir Gök İzmir Bakırçay University, Engineering and Architecture Faculty, Department of Biomedical Engineering, 35660 İzmir, Turkey https://orcid.org/0000-0001-5736-1884

DOI:

https://doi.org/10.14311/AP.2025.65.0361

Keywords:

AZ91, WEDM, material removal rate (MRR), surface roughness (SR), optimisation

Abstract

AZ91 magnesium alloys have poor machinability when conventional chip removal processes are used due to their low thermal stability and high susceptibility to softening and oxidation at elevated temperatures, which lead to excessive tool wear, poor surface quality, and deformation-induced machining challenges. This study investigated the impact of wire electrical discharge machining (WEDM) parameters on material removal rate (MRR) and surface roughness (SR) using magnesium. For this purpose, an analysis of variance (ANOVA) and Grey Relational Analysis (GRA) were performed to find the optimal settings. Findings indicate that pulse-on time (Ton) significantly affects both MRR and SR: higher Ton increases MRR but worsens SR, while shorter Ton improves SR but reduces MRR. Pulse-off time (Toff) and wire feed rate (WF) have secondary effects. Longer Toff improves surface quality but slightly reduces MRR, and lower WF improves cutting efficiency and MRR. The optimal settings identified by the Taguchi method were observed to be 123 μs Ton, 55 μs Toff, and 6 mmin−1 WF for high MRR; and 123 μs Ton, 58 μs Toff, and 4 mmin−1 WF for reduced SR. In summary, understanding how WEDM parameters affect MRR and SR allows manufacturers to achieve efficient material removal and desired surface quality.

Downloads

Download data is not yet available.

References

W. Pignaton, J. R. C. Braz, P. S. Kusano, et al. Perioperative and anesthesia-related mortality: An 8-year observational survey from a tertiary teaching hospital. Medicine (Baltimore) 95(2):e2208, 2016. https://doi.org/10.1097/MD.0000000000002208

B. F. N. Pascal, A. Malisawa, A. Barratt-Due, et al. General anaesthesia related mortality in a limited resource settings region: A retrospective study in two teaching hospitals of Butembo. BMC Anesthesiology 21(1):60, 2021. https://doi.org/10.1186/s12871-021-01280-2

M. S. Çömez, H. Demirkıran. Intraoperative anesthesiarelated mortality: A 10-year survey in a tertiary teaching hospital. Van Medical Journal 28(2):280–287, 2021. https://doi.org/10.5505/vtd.2021.02259

Q. Chen, G. A. Thouas. Metallic implant biomaterials. Materials Science and Engineering: R: Reports 87:1–57, 2015. https://doi.org/10.1016/j.mser.2014.10.001

A.-M. Wu, C. Bisignano, S. L. James, et al. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: A systematic analysis from the Global Burden of Disease Study 2019. The Lancet Healthy Longevity 2(9):E580–E592, 2021. https://doi.org/10.1016/S2666-7568(21)00172-0

N. Sykaras, A. M. Iacopino, V. A. Marker, et al. Implant materials, designs, and surface topographies: Their effect on osseointegration. A literature review. International Journal of Oral & Maxillofacial Implants 15(5):675–690, 2000.

V. Waide, L. Cristofolini, J. Stolk, et al. Modelling the fibrous tissue layer in cemented hip replacements: Experimental and finite element methods. Journal of Biomechanics 37(1):13–26, 2004. https://doi.org/10.1016/S0021-9290(03)00258-6

K. Kumar, R. S. Gill, U. Batra. Challenges and opportunities for biodegradable magnesium alloy implants. Materials Technology 33(2):153–172, 2017. https://doi.org/10.1080/10667857.2017.1377973

G. E. J. Poinern, S. Brundavanam, D. Fawcett. Biomedical magnesium alloys: A review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. American Journal of Biomedical Engineering 2(6):218–240, 2012. https://doi.org/10.5923/j.ajbe.20120206.02

Y. F. Zheng, X. Gu, F. Witte. Biodegradable metals. Materials Science and Engineering: R: Reports 77:1–34, 2014. https://doi.org/10.1016/j.mser.2014.01.001

K. Majerski, E. Siemionek, M. Szucki, P. Surdacki. Investigations of the effect of heat treatment and plastic deformation parameters on the formability and microstructure of AZ91 alloy castings. Advances in Science and Technology Research Journal 18(1):1–9, 2024. https://doi.org/10.12913/22998624/174932

E. Jonda, L. Łatka, A. Lont, et al. The effect of HVOF spray distance on solid particle erosion resistance of WC-based cermets bonded by Co, Co-Cr and Ni deposited on Mg-alloy substrate. Advances in Science and Technology Research Journal 18(2):115–128, 2024. https://doi.org/10.12913/22998624/184025

A. Gok, L. Urtekin, K. Gok, et al. Computer aided analysis of biomechanical performance of schanz screw with different additive manufacturing materials used in pertrochanteric fixator on an intertrochanteric femoral fracture (corrosion resistance approach). International Journal for Numerical Methods in Biomedical Engineering 39(12):e3763, 2023. https://doi.org/10.1002/cnm.3763

B. Barani, A. K. Lakshminarayanan, R. Subashini, et al. Microstructural characteristics of chitosan deposited AZ91. Materials Today: Proceedings 16:456–462, 2019. https://doi.org/10.1016/j.matpr.2019.05.115

D. Bairagi, S. Mandal. A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects. Journal of Magnesium and Alloys 10(3):627–669, 2022. https://doi.org/10.1016/j.jma.2021.09.005

F. Klocke, M. Schwade, A. Klink, A. Kopp. EDM machining capabilities of magnesium (Mg) alloy WE43 for medical applications. Procedia Engineering 19:190–195, 2011. https://doi.org/10.1016/j.proeng.2011.11.100

J. Xu, K. Xia, Z. Lian, et al. Surface properties on magnesium alloy and corrosion behaviour based high-speed wire electrical discharge machine power tubes. Micro & Nano Letters 11(1):15–19, 2016. https://doi.org/10.1049/mnl.2015.0204

K. H. Ho, S. T. Newman, S. Rahimifard, R. D. Allen. State of the art in wire electrical discharge machining (WEDM). International Journal of Machine Tools and Manufacture 44(12–13):1247–1259, 2004. https://doi.org/10.1016/j.ijmachtools.2004.04.017

V. Kavimani, K. S. Prakash, T. Thankachan. Influence of machining parameters on wire electrical discharge machining performance of reduced graphene oxide/magnesium composite and its surface integrity characteristics. Composites Part B: Engineering 167:621–630, 2019. https://doi.org/10.1016/j.compositesb.2019.03.031

H. Singh, R. Garg. Effects of process parameters on material removal rate in WEDM manufacturing and processing. Journal of Achievements in Materials and Manufacturing Engineering 32(1):70–74, 2009.

M. E. Asgar, A. K. S. Singholi. Parameter study and optimization of WEDM process: A review. IOP Conference Series: Materials Science and Engineering 404(1):012007, 2018. https://doi.org/10.1088/1757-899X/404/1/012007

L. Urtekin, H. B. Özerkan, C. Cogun, et al. Experimental investigation on wire electric discharge machining of biodegradable AZ91 Mg alloy. Journal of Materials Engineering and Performance 30(10):7752–7761, 2021. https://doi.org/10.1007/s11665-021-05939-2

R. Panwar, N. Sharma, A. Kumar, R. Khanna. Experimental investigation of WEDM control parameters for AZ61 Mg alloy using ANN modeling. Materials Today: Proceedings 62:1397–1401, 2022. https://doi.org/10.1016/j.matpr.2021.12.381

T. U. Siddiqui, J. Ramkumar. Micro-wire electric discharge machining of Mg alloy used in biodegradable orthopaedic implants. Materials Today: Proceedings 4(9):10273–10277, 2017. https://doi.org/10.1016/j.matpr.2017.06.363

N. Ahuja, U. Batra, K. Kumar. Experimental investigation and optimization of wire electrical discharge machining for surface characteristics and corrosion rate of biodegradable Mg alloy. Journal of Materials Engineering and Performance 29(6):4117–4129, 2020. https://doi.org/10.1007/s11665-020-04905-8

M. Somasundaram, J. P. Kumar. Multi response optimization of EDM process parameters for biodegradable AZ31 magnesium alloy using TOPSIS and grey relational analysis. Sadhana – Academy Proceedings in Engineering Sciences 47(3):136, 2022. https://doi.org/10.1007/s12046-022-01908-0

F. Han, J. Jiang, D. Yu. Influence of machining parameters on surface roughness in finish cut of WEDM. International Journal of Advanced Manufacturing Technology 34(5–6):538–546, 2007. https://doi.org/10.1007/s00170-006-0629-9

A. Mostafapor, H. Vahedi. Wire electrical discharge machining of AZ91 magnesium alloy; Investigation of effect of process input parameters on performance characteristics. Engineering Research Express 1(1):015005, 2019. https://doi.org/10.1088/2631-8695/ab26c8

N. Lenin, M. Sivakumar, G. Selvakumar, et al. Optimization of process control parameters for WEDM of Al-LM25/Fly Ash/B4C hybrid composites using evolutionary algorithms: A comparative study. Metals 11(7):1105, 2021. https://doi.org/10.3390/met11071105

D. K. Ammisetti, S. S. H. Kruthiventi. Experimental analysis and artificial neural network teaching – learning-based optimization modeling on electrical discharge machining characteristics of AZ91 composites. Journal of Materials Engineering and Performance 33(21):11718–11735, 2024. https://doi.org/10.1007/s11665-023-08795-4

R. Kumar, P. Katyal, S. Mandhania. Grey relational analysis based multiresponse optimization for WEDM of ZE41A magnesium alloy. International Journal of Lightweight Materials and Manufacture 5(4):543–554, 2022. https://doi.org/10.1016/j.ijlmm.2022.06.003

K. K. Goyal, N. Sharma, R. D. Gupta, et al. Measurement of performance characteristics of WEDM while processing AZ31 Mg-alloy using Levy flight MOGWO for orthopedic application. International Journal of Advanced Manufacturing Technology 119(11–12):7175–7197, 2022. https://doi.org/10.1007/s00170-021-08358-8

A. Muniappan, M. Sriram, C. Thiagarajan, et al. Optimization of WEDM process parameters on machining of AZ91 magnesium alloy using MOORA method. IOP Conference Series: Materials Science and Engineering 390(1):012107, 2018. https://doi.org/10.1088/1757-899X/390/1/012107

S. Gotagunaki, V. S. Mudakappanavar, R. Suresh. Wire electrical discharge machining characteristics of rare earth oxides reinforced AZ91D magnesium alloy hybrid composite using Taguchi-grey relational analysis approach. Hybrid Advances 4:100116, 2023. https://doi.org/10.1016/j.hybadv.2023.100116

S. S. Mahapatra, A. Patnaik. Parametric optimization of wire electrical discharge machining (WEDM) process using Taguchi method. Journal of the Brazilian Society of Mechanical Sciences and Engineering 28(4):422–429, 2006. https://doi.org/10.1590/S1678-58782006000400006

T. Lokeswara Rao, N. Selvaraj. Optimization of WEDM process parameters on titanium alloy using Taguchi method. International Journal of Modern Engineering Research 3(4):2281–2286, 2013.

R. Karthik, R. Viswanathan, J. Balaji, et al. Optimization of WEDM parameters for machining of AZ31B Mg alloy using Taguchi method. IOP Conference Series: Materials Science and Engineering 1013(1):012005, 2021. https://doi.org/10.1088/1757-899X/1013/1/012005

A. Muniappan, R. Solomon, V. Jayakumar, et al. An estimating the effect of control process variables on kerf width in wire EDM of AZ91 magnesium alloy by Taguchi method. IOP Conference Series: Materials Science and Engineering 402(1):012171, 2018. https://doi.org/10.1088/1757-899X/402/1/012171

P. Sivaiah, D. Chakradhar. Modeling and optimization of sustainable manufacturing process in machining of 17-4 PH stainless steel. Measurement 134:142–152, 2019. https://doi.org/10.1016/j.measurement.2018.10.067

A. Ustaoglu, B. Kursuncu, M. Alptekin, M. S. Gok. Performance optimization and parametric evaluation of the cascade vapor compression refrigeration cycle using Taguchi and ANOVA methods. Applied Thermal Engineering 180:115816, 2020. https://doi.org/10.1016/j.applthermaleng.2020.115816

L. Urtekin, F. Yılan, İ. B. Şahin. Optimization of rheology parameters for feedstock by powder injection molding (PIM) via Taguchi analysis. International Journal of Integrated Engineering 15(7):89–101, 2023.

A. Ikram, N. A. Mufti, M. Q. Saleem, A. R. Khan. Parametric optimization for surface roughness, kerf and MRR in wire electrical discharge machining (WEDM) using Taguchi design of experiment. Journal of Mechanical Science and Technology 27(7):2133–2141, 2013. https://doi.org/10.1007/s12206-013-0526-8

U. K. uz Zaman, U. A. Khan, S. Aziz, et al. Optimization of wire electric discharge machining (WEDM) process parameters for AISI 1045 medium carbon steel using Taguchi design of experiments. Materials 15(21):7846, 2022. https://doi.org/10.3390/ma15217846

İ. B. Şahin, F. Yılan, L. Urtekin. Optimisation on machining parametres by EDM of TiN coated Ti6Al4V alloys. Advances in Materials and Processing Technologies 10(2):960–970, 2024. https://doi.org/10.1080/2374068X.2023.2184585

M. A. B. Taher, U. Pelay, S. Russeil, D. Bougeard. A novel design to optimize the optical performances of parabolic trough collector using Taguchi, ANOVA and grey relational analysis methods. Renewable Energy 216:119105, 2023. https://doi.org/10.1016/j.renene.2023.119105

L. Urtekin, İ. B. Şahin, F. Yılan, et al. Investigation and optimization of cutting performance of high chrome white cast iron by wire erosion. Arabian Journal for Science and Engineering 49(2):1585–1596, 2023. https://doi.org/10.1007/s13369-023-07930-6

Downloads

Published

2025-07-09

Issue

Section

Articles

How to Cite

Urtekin, L., Yılan, F., Şahin, İbrahim B., & Gök, K. (2025). Analysis of surface roughness and machining performance of AZ91 magnesium alloy cut by WEDM. Acta Polytechnica, 65(3), 361–370. https://doi.org/10.14311/AP.2025.65.0361