Uranium foil neutron activation analysis
DOI:
https://doi.org/10.14311/AP.2025.65.0237Keywords:
production rate, uranium foils, neutron activation analysis, gamma-ray spectrometry, Training Reactor VR-1, HPGe detectorAbstract
At the Department of Nuclear Reactors of the Faculty of Nuclear Sciences and Physical Engineering of the Czech Technical University (FNSPE CTU) in Prague, there is a need to implement a neutron activation analysis as a tool for the separation of uranium foils depending on various 235U and 238U contents. Experiments were carried out on the training reactor VR-1 “Sparrow”, which is operated at the institute mentioned above. The uranium foils were analysed using the neutron activation analysis and gamma-ray spectrometry, and were separated into two groups, the first group contained foils of depleted uranium and the other contained natural uranium foils. The uranium foils can be further used for educational purposes or experimental applications, such as the measurement of neutron spectral indexes, neutron activation analysis of uranium ore, or delayed neutron analysis. The neutron activation analysis has been extended to determine whether foils contain natural or depleted uranium.
Downloads
References
Training reactor VR-1, 2017. [2024-06-17]. https://reaktor-vr1.cz/en/about-us/{VR-1}
Czech Technical University in Prague, Department of Nuclear Reactors, 2018. [2024-06-17]. https://katedra-reaktoru.cz/en/
M. Stefanik, S. Sazelova, L. Sklenka. Investigation of mammoth remains using the neutron activation analysis at the Training Reactor VR-1. Applied Radiation and Isotopes 166:109292, 2020. https://doi.org/10.1016/j.apradiso.2020.109292
M. Stefanik, M. Cesnek, L. Sklenka, et al. Neutron activation analysis of meteorites at the VR-1 training reactor. Radiation Physics and Chemistry 171:108675, 2020. https://doi.org/10.1016/j.radphyschem.2019.108675
M. Stefanik, J. Rataj, O. Huml, L. Sklenka. Study of dietary supplements compositions by neutron activation analysis at the VR-1 training reactor. Radiation Physics and Chemistry 140:471–474, 2017. https://doi.org/10.1016/j.radphyschem.2017.03.017
M. Stefanik, L. Sklenka, O. Huml, J. Rataj. Activation analysis of tibetan coins and thermal neutron flux measurement at the VR-1 training reactor. Radiation Physics and Chemistry 155:304–309, 2019. https://doi.org/10.1016/j.radphyschem.2018.06.032
M. Stefanik, L. Sklenka, M. Cesnek, et al. Neutron activation analysis of tibetan traditional medicinal pills at the VR-1 training reactor. Radiation Physics and Chemistry 167:108554, 2020. https://doi.org/10.1016/j.radphyschem.2019.108554
J. Matoušková, L. Sklenka, B. Schillinger. Investigation of Buddhist and Bon votive statues at the very low power reactor VR-1. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1060:169043, 2024. https://doi.org/10.1016/j.nima.2023.169043
L. Benedik, A. M. Pilar, H. Prosen, et al. Determination of ultra-trace levels of uranium and thorium in electrolytic copper using radiochemical neutron activation analysis. Applied Radiation and Isotopes 175:109801, 2021. https://doi.org/10.1016/j.apradiso.2021.109801
M. Byers, S. Landsberger, E. Schneider, S. Eder. Neutron activation analysis for the characterization of seawater uranium adsorbents. Applied Radiation and Isotopes 133:4–8, 2018. https://doi.org/10.1016/j.apradiso.2017.11.032
S. Landsberger, R. Kapsimalis. Comparison of neutron activation analysis techniques for the determination of uranium concentrations in geological and environmental materials. Journal of Environmental Radioactivity 117:41–44, 2013. https://doi.org/10.1016/j.jenvrad.2011.08.014
F. S. Olise, O. F. Oladejo, S. M. Almeida, et al. Instrumental neutron activation analyses of uranium and thorium in samples from tin mining and processing sites. Journal of Geochemical Exploration 142:36–42, 2014. https://doi.org/10.1016/j.gexplo.2014.01.004
V. Fondement, B. Perot, T. Marchais, et al. Development of a neutron probe to perform a combined measurement of uranium concentration and hydrogen porosity for mining applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1059:168888, 2024. https://doi.org/10.1016/j.nima.2023.168888
Z. B. Alfassi. Activation analysis. Volume I. CRC Press, 1990. ISBN 0-8493-4583-9.
R. R. Greenberg, P. Bode, E. A. De Nadai Fernandes. Neutron activation analysis: A primary method of measurement. Spectrochimica Acta Part B: Atomic Spectroscopy 66(3–4):193–241, 2011. https://doi.org/10.1016/j.sab.2010.12.011
National Institute of Standards and Technology. NIST XCOM: Element/compound/mixture. [2024-06-17]. https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
G. S. C. Joel, S. Penabei, M. M. Ndontchueng, et al. Precision measurement of radioactivity in gamma-rays spectrometry using two HPGe detectors (BEGe-6530 and GC0818-7600SL models) comparison techniques: Application to the soil measurement. MethodsX 4:42–54, 2017. https://doi.org/10.1016/j.mex.2016.12.003
M. F. L’Annunziata. Handbook of radioactivity analysis. Academic Press, 3rd edn., 2012. ISBN 978-0-12-384873-4.
G. F. Knoll. Radiation detection and measurement. John Wiley & Sons, Inc., 4th edn., 2010. ISBN 978-0-470-13148-0.
A. Ghalehasadi, S. Ashrafi, D. Alizadeh, N. Meriç. Gamma ray interactions based optimization algorithm: Application in radioisotope identification. Nuclear Engineering and Technology 53(11):3772–3783, 2021. https://doi.org/10.1016/j.net.2021.05.018
S. Ashrafi, O. Jahanbakhsh, D. Alizadeh, B. Salehpour. A novel method for non-destructive Compton scatter imaging based on the genetic algorithm. Central European Journal of Physics 11(5):560–567, 2013. https://doi.org/10.2478/s11534-013-0239-8
Mediasource: CTU through images and sound, 2024. [2024-06-17]. https://media.cvut.cz/en
O. Huml, F. Fejt, J. Rataj. Neutronově-fyzikální charakteristiky AZ C20 školního reaktoru VR-1 [In Czech; Neutron-physical characteristics of the reactor core C20 of the VR-1 training reactor]. Tech. Rep. CTU-14117-P-19-22, KJR FJFI ČVUT v Praze, 2023.
Canberra-Packard. [2024-06-17]. https://www.cpce.net
D. A. Brown, M. B. Chadwick, R. Capote, et al. ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nuclear Data Sheets 148:1–142, 2018. https://doi.org/10.1016/j.nds.2018.02.001
The Lund/LBNL nuclear data search. [2024-06-17]. http://nucleardata.nuclear.lu.se/toi/
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ján Kozic, Milan Štefánik

This work is licensed under a Creative Commons Attribution 4.0 International License.


