Influence of MR thermometry on predicted temperature during regional hyperthermia treatment

Authors

  • Michael Vydra Czech Technical University in Prague, Faculty of Biomedical Engineering, Department of Biomedical Technology, nám. Sítná 3105, 272 01 Kladno, Czech Republic
  • Tomas Drizdal Czech Technical University in Prague, Faculty of Biomedical Engineering, Department of Biomedical Technology, nám. Sítná 3105, 272 01 Kladno, Czech Republic

DOI:

https://doi.org/10.14311/AP.2025.65.0705

Keywords:

deep regional hyperthermia, magnetic resonance, MR thermometry

Abstract

Hyperthermia treatment involves heating tissues to 40–44 °C in order to enhance the efficacy of radiotherapy and/or chemotherapy. Temperature increase is usually induced by the constructive interference of several electromagnetic waves radiating from external sources and can be monitored using magnetic resonance (MR) thermometry. This study aimed to predict temperature increases from non-invasive MR thermometry electromagnetic exposure during deep regional hyperthermia treatment. A 1.5T MR birdcage coil was tuned to produce a homogeneous B1+ field and simulated together with the Sigma Eye hyperthermia applicator and three available patient models. Results show that electromagnetic exposure during MR measurements increases temperature by 0.027 °C, which is, in the hyperthermia temperature range, insignificant. In addition, our results show that the predicted B1+ field homogeneity was influenced by object size and material properties, especially by the water bolus filling the inner part of the applicator.

Downloads

Download data is not yet available.

References

J. Van der Zee. Heating the patient: A promising approach? Annals of Oncology 13(8):1173–1184, 2002. https://doi.org/10.1093/annonc/mdf280

R. D. Issels, L. H. Lindner, J. Verweij, et al. Effect of neoadjuvant chemotherapy plus regional hyperthermia on long-term outcomes among patients with localized high-risk soft tissue sarcoma: The EORTC 62961-ESHO 95 randomized clinical trial. JAMA Oncology 4(4):483–492, 2018. https://doi.org/10.1001/jamaoncol.2017.4996

N. R. Datta, E. Stutz, S. Gomez, S. Bodis. Efficacy and safety evaluation of the various therapeutic options in locally advanced cervix cancer: A systematic review and network meta-analysis of randomized clinical trials. International Journal of Radiation Oncology, Biology, Physics 103(2):411–437, 2019. https://doi.org/10.1016/j.ijrobp.2018.09.037

H. P. Kok, J. Crezee. Validation and practical use of Plan2Heat hyperthermia treatment planning for capacitive heating. International Journal of Hyperthermia 39(1):952–966, 2022. https://doi.org/10.1080/02656736.2022.2093996

A. Bakker, R. Zweije, H. P. Kok, et al. Comparison of the clinical performance of a hybrid Alba 4D and the AMC-4 locoregional hyperthermia systems. International Journal of Hyperthermia 39(1):1408–1414, 2022. https://doi.org/10.1080/02656736.2022.2140841

H. P. Kok, G. C. van Rhoon, T. D. Herrera, et al. Biological modeling in thermoradiotherapy: present status and ongoing developments toward routine clinical use. International Journal of Hyperthermia 39(1):1126–1140, 2022. https://doi.org/10.1080/02656736.2022.2113826

I. VilasBoas-Ribeiro, M. Franckena, G. C. van Rhoon, et al. Using MRI to measure position and anatomy changes and assess their impact on the accuracy of hyperthermia treatment planning for cervical cancer. International Journal of Hyperthermia 40(1):2151648, 2023. https://doi.org/10.1080/02656736.2022.2151648

H. P. Kok, P. M. A. van Haaren, J. B. van de Kamer, et al. High-resolution temperature-based optimization for hyperthermia treatment planning. Physics in Medicine & Biology 50(13):3127, 2005. https://doi.org/10.1088/0031-9155/50/13/011

J. Gellermann, J. Göke, R. Figiel, et al. Simulation of different applicator positions for treatment of a presacral tumour. International Journal of Hyperthermia 23(1):37–47, 2007. https://doi.org/10.1080/02656730601121549

T. Drizdal, M. Novak. Application of an artificial intelligence segmentation for deep hyperthermia treatment planning in the pelvic region. Acta Polytechnica 63(6):383–389, 2023. https://doi.org/10.14311/AP.2023.63.0383

H. P. Kok, J. Crezee. Adapt2Heat: Treatment planning-assisted locoregional hyperthermia by on-line visualization, optimization and re-optimization of SAR and temperature distributions. International Journal of Hyperthermia 39(1):265–277, 2022. https://doi.org/10.1080/02656736.2022.2032845

H. P. Kok, J. Crezee. Hyperthermia treatment planning: Clinical application and ongoing developments. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 5(3):214–222, 2021. https://doi.org/10.1109/jerm.2020.3032838

A. Bakker, R. Zweije, G. van Tienhoven, et al. Two high-resolution thermal monitoring sheets for clinical superficial hyperthermia. Physics in Medicine & Biology 65(17):175021, 2020. https://doi.org/10.1088/1361-6560/ab9bc2

F. Lestini, N. Panunzio, G. Marrocco, C. Occhiuzzi. Epidermal RFID-based thermal monitoring sheet (R-TMS) for microwave hyperthermia. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 7(4):365–374, 2023. https://doi.org/10.1109/JERM.2023.3299525

T. V. Feddersen, D. H. J. Poot, M. M. Paulides, et al. Multi-echo gradient echo pulse sequences: Which is best for PRFS MR thermometry guided hyperthermia? International Journal of Hyperthermia 40(1):2184399, 2023. https://doi.org/10.1080/02656736.2023.2184399

T. V. Feddersen, J. A. Hernandez-Tamames, M. M. Paulides, et al. Magnetic resonance thermometry for hyperthermia in the oropharynx region. International Journal of Hyperthermia 41(1):2352545, 2024. https://doi.org/10.1080/02656736.2024.2352545

H. Odéen, D. L. Parker. Magnetic resonance thermometry and its biological applications–physical principles and practical considerations. Progress in Nuclear Magnetic Resonance Spectroscopy 110:34–61, 2019. https://doi.org/10.1016/j.pnmrs.2019.01.003

J. Blackwell, M. J. Kraśny, A. O’Brien, et al. Proton resonance frequency shift thermometry: A review of modern clinical practices. Journal of Magnetic Resonance Imaging 55(2):389–403, 2022. https://doi.org/10.1002/jmri.27446

T. Drizdal, M. R. Tarasek, R. Pellicer, et al. Influence of deep-region RF hyperthermia system on B1+ field of 1.5 T MR scanner: A simulation study. In Proceedings of International Socciety for Magnetic Resonance in Medicine, vol. 22, p. 1364. International Socciety for Magnetic Resonance in Medicine, 2014.

J. Chi, F. Liu, E. Weber, et al. GPU-accelerated FDTD modeling of radio-frequency field–tissue interactions in high-field MRI. IEEE Transactions on Biomedical Engineering 58(6):1789–1796, 2011. https://doi.org/10.1109/TBME.2011.2116020

M. Murbach, E. Neufeld, M. Capstick, et al. Thermal tissue damage model analyzed for different whole-body SAR and scan durations for standard MR body coils. Magnetic Resonance in Medicine 71(1):421–431, 2014. https://doi.org/10.1002/mrm.24671

P. Wust, H. Fähling, W. Wlodarczyk, et al. Antenna arrays in the SIGMA-eye applicator: interactions and transforming networks. Medical Physics 28(8):1793–1805, 2001. https://doi.org/10.1118/1.1388220

M.-C. Gosselin, E. Neufeld, H. Moser, et al. Development of a new generation of high-resolution anatomical models for medical device evaluation: The Virtual Population 3.0. Physics in Medicine & Biology 59(18):5287, 2014. https://doi.org/10.1088/0031-9155/59/18/5287

A. Christ, W. Kainz, E. G. Hahn, et al. The Virtual Family – development of surface-based anatomical models of two adults and two children for dosimetric simulations. Physics in Medicine & Biology 55(2):N23, 2010. https://doi.org/10.1088/0031-9155/55/2/N01

H. D. Trefná, H. Crezee, M. Schmidt, et al. Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements. International Journal of Hyperthermia 33(4):471–482, 2017. https://doi.org/10.1080/02656736.2016.1277791

F. G. Shellock, D. J. Schaefer, J. V. Crues. Alterations in body and skin temperatures caused by magnetic resonance imaging: Is the recommended exposure for radiofrequency radiation too conservative? British Journal of Radiology 62(742):904–909, 1989. https://doi.org/10.1259/0007-1285-62-742-904

S. Curto, H. T. Mulder, B. Aklan, et al. A multiinstitution study: Comparison of the heating patterns of five different MR-guided deep hyperthermia systems using an anthropomorphic phantom. International Journal of Hyperthermia 37(1):1103–1115, 2020. https://doi.org/10.1080/02656736.2020.1810331

O. Fišer, I. Merunka, J. Vrba. Waveguide applicator system for head and neck hyperthermia treatment. Journal of Electrical Engineering and Technology 11(6):1744–1753, 2016. https://doi.org/10.5370/JEET.2016.11.6.1744

D. Vrba, J. Vrba, D. B. Rodrigues, P. Stauffer. Numerical investigation of novel microwave applicators based on zero-order mode resonance for hyperthermia treatment of cancer. Journal of the Franklin Institute 354(18):8734–8746, 2017. https://doi.org/10.1016/j.jfranklin.2016.10.044

J. Crezee, R. Zweije, J. Sijbrands, H. P. Kok. Dedicated 70MHz RF systems for hyperthermia of challenging tumor locations. International Journal of Microwave and Wireless Technologies 12(9):839–847, 2020. https://doi.org/10.1017/S1759078720000318

M. R. S. Ramu, K. Arunachalam. Miniaturized 434MHz cavity encapsulated patch antenna for superficial hyperthermia treatment. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 7(4):392–399, 2023. https://doi.org/10.1109/JERM.2023.3307220

Downloads

Published

2026-01-15

Issue

Section

Articles

How to Cite

Vydra, M., & Drizdal, T. (2026). Influence of MR thermometry on predicted temperature during regional hyperthermia treatment. Acta Polytechnica, 65(6), 705–711. https://doi.org/10.14311/AP.2025.65.0705