Comparison of cavitation erosion of NiCrBSi and AISI 316L coatings deposited by powder plasma transferred Arc welding
DOI:
https://doi.org/10.14311/AP.2025.65.0282Keywords:
cavitation erosion, hardfacing, stainless steel, surface engineering, microstructure, hardnessAbstract
This study carefully compares the effect of microstructure and hardness on the cavitation wear resistance of PPTA (Powder Plasma Transferred Arc) deposited coatings. Deposits were made on a substrate of S235JR structural steel. Two types of feedstock powder were used: material with the chemical composition of AISI 316L stainless steel, and a nickel-based, self-fluxing powder type NiCrBSi. This study involved conducting cavitation erosion tests on a vibratory test rig in accordance with the ASTM G32 standard, using the stationary specimen method. Metallographic investigations confirmed the presence of austenitic dendrites and delta ferrite precipitations in the microstructure of AISI 316L and the presence of hard carbides and borides within the nickel-based matrix of NiCrBSi hardfacing. It can be seen that the AISI 316L coating, having a much lower hardness in the range of 250–280 HV1, achieved four times poorer cavitation erosion resistance compared to the NiCrBSi coating, which has a hardness in the range of 820–890 HV1. Following the erosion testing, the AISI 316L stainless steel exhibited a mean depth of erosion of MDE6h = 28.8 μm, whereas the NiCrBSi hardfacing exhibited a mean depth of erosion of MDE6h = 7.1 μm. Moreover, NiCrBSi hardfacing exhibits a higher cavitation erosion resistance than the stainless steel coating, with erosion rates of 2.59 mgh−1 (1.60 μmh−1) and 8.11 mgh−1 (5.28 μmh−1), respectively. In the case of different types of overlay material, such as stainless steel and NiCrBSi coatings, the higher hardness and fine, hard particle-rich microstructure improves the cavitation erosion resistance of PPTA overlays.
Downloads
References
J. Krawczyk, R. Jasionowski, D. Ura, et al. The effect of cavitation erosion on austenitic-ferritic steel. Scientific Journals Maritime University of Szczecin 56(128):30–35, 2018. https://doi.org/10.17402/310
H. Rostova, V. Voyevodin, R. Vasilenko, et al. Cavitation wear of Eurofer 97, Cr18Ni10Ti and 42HNM alloys. Acta Polytechnica 61(6):762–767, 2021. https://doi.org/10.14311/AP.2021.61.0762
D. E. Zakrzewska, M. H. Buszko, A. Marchewicz, A. K. Krella. Concept of cavitation erosion assessment of austenitic 1.4301 stainless steel based on roughness development. Tribology International 183:108431, 2023. https://doi.org/10.1016/j.triboint.2023.108431
A. K. Krella, J. Grześ, A. Erbe, M. Folstad. Behaviour of nickel coatings made by brush plating technology in conditions of cavitation erosion and corrosion. Wear 530–531:204998, 2023. https://doi.org/10.1016/j.wear.2023.204998
R. Jasionowski, W. Depczyński, D. Zasada. Analysis of the initial cavitation erosion period of selected nickel alloys. IOP Conference Series: Materials Science and Engineering 461(1):012032, 2018. https://doi.org/10.1088/1757-899X/461/1/012032
G. X. Zhou, T. Zhao, M. S. Wang, et al. Effect of main arc current on microstructure and cavitation resistance of NiCrBSi-WC alloy coating prepared by plasma transfer arc welding. Journal of Thermal Spray Technology 33(8):2853–2875, 2024. https://doi.org/10.1007/s11666-024-01872-7
A. Świetlicki, M. Szala, M. Walczak. Effects of shot peening and cavitation peening on properties of surface layer of metallic materials – A short review. Materials 15(7):2476, 2022. https://doi.org/10.3390/ma15072476
G. Gottardi, M. Tocci, L. Montesano, A. Pola. Cavitation erosion behaviour of an innovative aluminium alloy for hybrid aluminium forging. Wear 394–395:1–10, 2018. https://doi.org/10.1016/j.wear.2017.10.009
M. Szala, L. Łatka, M. Awtoniuk, et al. Neural modelling of APS thermal spray process parameters for optimizing the hardness, porosity and cavitation erosion resistance of Al2O3-13 wt.% TiO2 coatings. Processes 8(12):1544, 2020. https://doi.org/10.3390/pr8121544
G. Gao, S. Guo, D. Li. A review of cavitation erosion on pumps and valves in nuclear power plants. Materials 17(5):1007, 2024. https://doi.org/10.3390/ma17051007
D. E. Zakrzewska, A. K. Krella. Cavitation erosion resistance influence of material properties. Advances in Materials Science 19(4):18–34, 2019. https://doi.org/10.2478/adms-2019-0019
Ł. Szymański, E. Olejnik, J. J. Sobczak, et al. Dry sliding, slurry abrasion and cavitation erosion of composite layers reinforced by TiC fabricated in situ in cast steel and gray cast iron. Journal of Materials Processing Technology 308:117688, 2022. https://doi.org/10.1016/j.jmatprotec.2022.117688
M. Szala, D. Chocyk, M. Turek. Effect of manganese ion implantation on cavitation erosion resistance of HIPed Stellite 6. Acta Physica Polonica A 142(6):741, 2023. https://doi.org/10.12693/APhysPolA.142.741
M. Bembenek, P. Prysyazhnyuk, T. Shihab, et al. Microstructure and wear characterization of the Fe-Mo-B-C-based hardfacing alloys deposited by flux-cored arc welding. Materials 15(14):5074, 2022. https://doi.org/10.3390/ma15145074
T. Zhao, S. Zhang, Z. Y. Wang, et al. Cavitation erosion/corrosion synergy and wear behaviors of nickel-based alloy coatings on 304 stainless steel prepared by cold metal transfer. Wear 510–511:204510, 2022. https://doi.org/10.1016/j.wear.2022.204510
M. Kaszuba, P. Widomski, P. Białucki, et al. Properties of new-generation hybrid layers combining hardfacing and nitriding dedicated to improvement in forging tools’ durability. Archives of Civil and Mechanical Engineering 20(3):78, 2020. https://doi.org/10.1007/s43452-020-00080-8
S. BansaL, S. Kaushal, D. Gupta, V. Jain. On microstructure and cavitation erosion behavior of microwave-synthesized Ni-Al2O3-based composite claddings. Surface Review and Letters 32(05):2240006, 2025. https://doi.org/10.1142/S0218625X22400066
L. Łatka, P. Biskup. Development in PTA surface modifications – A review. Advances in Materials Science 20(2):39–53, 2020. https://doi.org/10.2478/adms-2020-0009
M. Bober, J. Senkara. Comparative tests of plasmasurfaced nickel layers with chromium and titanium carbides. Welding International 30(2):107–111, 2016. https://doi.org/10.1080/09507116.2014.937616
A. N. S. Appiah, B. Wyględacz, K. Matus, et al. Microstructure and performance of NiCrBSi coatings prepared by modulated arc currents using powder plasma transferred arc welding technology. Applied Surface Science 648:159065, 2024. https://doi.org/10.1016/j.apsusc.2023.159065
A. Skoczylas. Vibratory shot peening of elements cut with abrasive water jet. Advances in Science and Technology Research Journal 16(2):39–49, 2022. https://doi.org/10.12913/22998624/146272
M. Szala, M. Szafran, J. Matijošius, K. Drozd. Abrasive wear mechanisms of S235JR, S355J2, C45, AISI 304, and Hardox 500 steels tested using garnet, corundum and carborundum abrasives. Advances in Science and Technology Research Journal 17(2):147–160, 2023. https://doi.org/10.12913/22998624/161277
P. Wang, Y. Zhang, D. Yu. Microstructure and mechanical properties of pressure-quenched SS304 stainless steel. Materials 12(2):290, 2019. https://doi.org/10.3390/ma12020290
A. N. S. Appiah, B. Wyględacz, K. Matus, et al. Microstructure and performance of NiCrBSi coatings prepared by modulated arc currents using powder plasma transferred arc welding technology. Applied Surface Science 648:159065, 2024. https://doi.org/10.1016/j.apsusc.2023.159065
A. N. S. Appiah, O. Bialas, M. Żuk, et al. Hardfacing of mild steel with wear-resistant Ni-based powders containing tungsten carbide particles using powder plasma transferred arc welding technology. Materials Science-Poland 40(3):42–63, 2022. https://doi.org/10.2478/msp-2022-0033
M. Walczak, K. Drozd, M. Szala, J. Caban. Influence of recast NiCrMo alloy addition on porcelain-fused-to-metal bond strength. Chiang Mai Journal of Science 46(4):766–777, 2019.
M. Szala, M. Walczak, T. Hejwowski. Factors influencing cavitation erosion of NiCrSiB hardfacings deposited by oxy-acetylene powder welding on grey cast iron. Advances in Science and Technology Research Journal 15(4):376–386, 2021. https://doi.org/10.12913/22998624/143304
M. Zemlik, Ł. Konat, B. Białobrzeska. Analysis of the possibilities to increase abrasion resistance of welded joints of Hardox Extreme steel. Tribology International 201:110271, 2025. https://doi.org/10.1016/j.triboint.2024.110271
P. Widomski, M. Kaszuba, P. Sokołowski, et al. Nitriding of hardfaced layers as a method of improving wear resistance of hot forging tools. Archives of Civil and Mechanical Engineering 23(4):241, 2023. https://doi.org/10.1007/s43452-023-00778-5
P. Prysyazhnyuk, M. Bembenek, I. Drach, et al. Restoration of the impact crusher rotor using FCAW with high-manganese steel reinforced by complex carbides. Management Systems in Production Engineering 32(2):294–302, 2024. https://doi.org/10.2478/mspe-2024-0028
M. Bembenek, V. Tsyganov, N. Sakhniuk, et al. Tribology characteristics of heatproof alloys at a dynamic pin ladening in the variable temperature field. Advances in Science and Technology Research Journal 17(5):140–152, 2023. https://doi.org/10.12913/22998624/171836
M. Szala, T. Hejwowski, I. Lenart. Cavitation erosion resistance of Ni-Co based coatings. Advances in Science and Technology Research Journal 8(21):36–42, 2014. https://doi.org/10.12913/22998624.1091876
C. R. Will, A. R. Capra, A. G. M. Pukasiewicz, et al. Comparative study of three austenitic alloy with cobalt resistant to cavitation deposited by plasma welding. Welding International 26(2):96–103, 2012. https://doi.org/10.1080/09507116.2010.527487
M. Górnik, M. Lachowicz, L. Łatka. Corrosion resistance of PPTA Ni-based hardfacing layers. Materials Science-Poland 42(4):66–78, 2024. https://doi.org/10.2478/msp-2024-0040
A. Tahaei, B. B. Vanani, M. Abbasi, A. Arizmendi-Morquecho. The hardfacing properties of the nickel-based coating deposited by the PTA process with the addition of WC nano-particles: Wear investigation. Tribology International 193:109472, 2024. https://doi.org/10.1016/j.triboint.2024.109472
S. Balaguru, M. Abid, M. Gupta. Investigations on different hardfacing processes for high temperature applications of Ni-Cr-B-Si alloy hardfaced on austenitic stainless steel components. Journal of Materials Research and Technology 9(5):10062–10072, 2020. https://doi.org/10.1016/j.jmrt.2020.07.010
Z. Bergant, U. Trdan, J. Grum. Effect of hightemperature furnace treatment on the microstructure and corrosion behavior of NiCrBSi flame-sprayed coatings. Corrosion Science 88:372–386, 2014. https://doi.org/10.1016/j.corsci.2014.07.057
M. Landowski, A. Świerczyńska, G. Rogalski, D. Fydrych. Autogenous fiber laser welding of 316L austenitic and 2304 lean duplex stainless steels. Materials 13(13):2930, 2020. https://doi.org/10.3390/ma13132930
M. Walczak, M. Szala, W. Okuniewski. Assessment of corrosion resistance and hardness of shot peened X5CrNi18-10 steel. Materials 15(24):9000, 2022. https://doi.org/10.3390/ma15249000
B. Skowrońska, T. Chmielewski, M. Kulczyk, et al. Microstructural investigation of a friction-welded 316L stainless steel with ultrafine-grained structure obtained by hydrostatic extrusion. Materials 14(6):1537, 2021. https://doi.org/10.3390/ma14061537
E. Jonda, M. Szala, M. Sroka, et al. Investigations of cavitation erosion and wear resistance of cermet coatings manufactured by HVOF spraying. Applied Surface Science 608:155071, 2023. https://doi.org/10.1016/j.apsusc.2022.155071
M. Szala, L. Łatka, M. Walczak, M. Winnicki. Comparative study on the cavitation erosion and sliding wear of cold-sprayed Al/Al2O3 and Cu/Al2O3 coatings, and stainless steel, aluminium alloy, copper and brass. Metals 10(7):856, 2020. https://doi.org/10.3390/met10070856
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Weronika Henzler, Mirosław Szala, Tomasz Pałka, Bernard Wyględacz, Artur Czupryński, Leszek Łatka

This work is licensed under a Creative Commons Attribution 4.0 International License.


