Direct current nanogrid providing energy for water pumping: a comparative study in a riverside community in the Amazon

Authors

  • Victor Parente de Oliveira Alves Federal University of Pará (UFPA), Institute of Technology (ITEC), Group of Studies and Development of Energy Alternatives (GEDAE), Augusto Corrêa 01, 66075-110 Belém, Brazil https://orcid.org/0000-0002-5857-3923
  • Wilson Negrão Macêdo Federal University of Pará (UFPA), Institute of Technology (ITEC), Group of Studies and Development of Energy Alternatives (GEDAE), Augusto Corrêa 01, 66075-110 Belém, Brazil https://orcid.org/0000-0002-6097-8620
  • Maros André Barros Galhardo Federal University of Pará (UFPA), Institute of Technology (ITEC), Group of Studies and Development of Energy Alternatives (GEDAE), Augusto Corrêa 01, 66075-110 Belém, Brazil https://orcid.org/0000-0001-6248-5187

DOI:

https://doi.org/10.14311/AP.2025.65.0454

Keywords:

Amazon, water pump, D.C. nanogrid, energy efficiency, comparative performance

Abstract

Water pumping systems are crucial for improving the quality of life for riverside communities. In the Amazon, most of these systems still rely on fossil fuels. However, new off-grid electrification structures using Direct Current Distribution Nanogrids (DCDN) offer better energy efficiency, resilience, cost savings, and reduced environmental impact. This article presents a comparative theoretical and experimental study of various water pumps in Ilha das Onças, Pará, Brazil, where an open structure DCDN with distributed photovoltaic generation and energy storage was implemented to power eight residences and a church. The case study monitored a residential pumping system, analysing the performance before and after installing the DCDN, focusing on various energy supply types (fossil fuel, AC via inverter, and DC connected to the grid), as well as the economic and environmental impacts associated with the energy supply on the island. The results show potential savings of up to $4.5 million in gasoline costs over 25 years, and the equivalent annual CO2 emission can be reduced by 123 tons annually, considering the replicability to other nearby residences, showcasing the benefits of the solution and positive technical, economic, and environmental impacts.

Downloads

Download data is not yet available.

References

International Energy Agency (IEA). Electricity market report 2023. Tech. rep., IEA, Paris, France, 2023.

International Energy Agency (IEA). Renewables 2022. Tech. rep., IEA, Paris, France, 2022.

International Energy Agency (IEA). World energy outlook 2022. Tech. rep., IEA, Paris, France, 2022.

International Energy Agency (IEA). Solar PV, 2022. [2025-01-06]. https://www.iea.org/energysystem/renewables/solar-pv

Energy Research Company (EPE). Brazilian energy balance 2023. Tech. rep., EPE, Brasil, 2023.

Brazilian Institute of Geography and Statistics (IBGE). Legal Amazon, 2022. [2025-01-06]. https://www.ibge.gov.br/en/geosciences/maps/regional-maps/17927-legal-amazon.html

K. Meah, S. Fletcher, S. Ula. Solar photovoltaic water pumping for remote locations. Renewable and Sustainable Energy Reviews 12(2):472–487, 2008. https://doi.org/10.1016/j.rser.2006.10.008

K. Meah, S. Ula, S. Barrett. Solar photovoltaic water pumping – opportunities and challenges. Renewable and Sustainable Energy Reviews 12(4):1162–1175, 2008. https://doi.org/10.1016/j.rser.2006.10.020

C. Gopal, M. Mohanraj, P. Chandramohan, P. Chandrasekar. Renewable energy source water pumping systems – A literature review. Renewable and Sustainable Energy Reviews 25:351–370, 2013. https://doi.org/10.1016/j.rser.2013.04.012

M. Makhlouf, F. Messai, H. Benalla. Vectorial command of induction motor pumping system supplied by a photovoltaic generator. Journal of Electrical Engineering 62(1):3–10, 2011. https://doi.org/10.2478/v10187-011-0001-7

W. Wang, Z. Han, J. Pei, et al. Energy efficiency optimization of water pump based on heuristic algorithm and computational fluid dynamics. Journal of Computational Design and Engineering 10(1):382–397, 2022. https://doi.org/10.1093/jcde/qwac142

M. Habiballahi, M. Ameri, S. H. Mansouri. Efficiency improvement of photovoltaic water pumping systems by means of water flow beneath photovoltaic cells surface. Journal of Solar Energy Engineering 137(4):044501, 2015. https://doi.org/10.1115/1.4029932

A. C. N. Pacifico, A. C. S. do Nascimento, D. S. S. Corrêa, et al. Tecnologia para acesso à água na várzea amazônica: impactos positivos na vida de comunidades ribeirinhas do Médio Solimões, Amazonas, Brasil [In Portuguese; Technology for access to water in the Amazonian floodplain: positive impacts on the lives of riverine communities in the Middle Solimões, Amazonas State, Brazil]. Cadernos de Saúde Pública 37(3):e00084520, 2021. https://doi.org/10.1590/0102-311X00084520

J. T. Pinho, C. F. O. Barbosa, E. J. da Silva Pereira, et al. Sistemas híbridos: Soluções energéticas para a Amazônia [In Portuguese; Hybrid systems: Energy solutions for the Amazon]. Ministério de Minas e Energia, Brasil, 2008.

S. S. Chandel, M. Nagaraju Naik, R. Chandel. Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renewable and Sustainable Energy Reviews 49:1084–1099, 2015. https://doi.org/10.1016/j.rser.2015.04.083

N. Pushpraj, N. Gupta, V. Gupta, M. A. Mulla. Solar energy harvesting for irrigation water pumping system. In 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), pp. 1398–1402. 2017. https://doi.org/10.1109/ICPCSI.2017.8391941

S. Hilarydoss. Suitability, sizing, economics, environmental impacts and limitations of solar photovoltaic water pumping system for groundwater irrigation – a brief review. Environmental Science and Pollution Research 30(28):71491–71510, 2023. https://doi.org/10.1007/s11356-021-12402-1

A. A. Peralta Vera, H. J. del Carpio Beltrán, J. C. Zúñiga Torres, et al. Experimental study of a photovoltaic direct current water pumping system for irrigation in rural-isolated region of Arequipa, Peru. Journal of Solar Energy Engineering 141(4):041012, 2019. https://doi.org/10.1115/1.4042724

J. Sitranon, C. Lertsatitthanakorn, P. Namprakai, et al. Parametric consideration of a thermal water pump and application for agriculture. Journal of Solar Energy Engineering 137(3):031006, 2015. https://doi.org/10.1115/1.4029108

W. R. do Nascimento. Composição florística de quintais agroflorestais na Ilha das Onças, Barcarena - PA [In Portuguese; Floristic composition of agrofloretal backyards on the island of Onças, Barcarena – PA]. Bachelor’s thesis, Federal Rural University of the Amazon, Brasil, 2022.

Airbus. Maps data: Google, 2024.

Landsat/Copernicus. Maps data: Google, 2020.

M. Mokhtar, M. I. Marei, A. A. El-Sattar. Improved current sharing techniques for DC microgrids. Electric Power Components and Systems 46(7):757–767, 2018. https://doi.org/10.1080/15325008.2018.1512176

A. C. da Fonseca, W. N. Macêdo, M. A. B. Galhardo. Impacts of power quality events on supplying loads in an experimental open structure DC nanogrid under different operating conditions. Electric Power Systems Research 238:111082, 2025. https://doi.org/10.1016/j.epsr.2024.111082

S. A. Hosseini, B. Taheri, S. H. H. Sadeghi, A. Nasiri. An overview of DC microgrid protection schemes and the factors involved. Electric Power Components and Systems pp. 1–31, 2023. [Online first]. https://doi.org/10.1080/15325008.2023.2251469

P. Bukirwa. Acai processing through solar microgrids in remote communities in the Amazonian region of Brazil. Master’s thesis, Imperial College London, UK, 2019.

T. O. Costa. Modelagem e simulação em ambiente simulink de uma nanorrede de distribuição de corrente contínua [In Portuguese; Modeling and simulation in simulink environment of a direct current distribution nanogrid]. Bachelor’s thesis, Federal University of Pará, Brasil, 2021.

J. A. A. Filho. Desenvolvimento de uma batedeira de açaí em corrente contínua e monitoramento de sua aplicação em uma edificação ribeirinha na Amazônia suprida por sistema fotovoltaico isolado [In Portuguese; Development of a direct current açaí mixer and monitoring of its application in a riverside building in the Amazon supplied by an isolated photovoltaic system]. Master’s thesis, Federal University of Pará, Brasil, 2021.

A. F. P. Costa. Desenvolvimento de ferramenta para análise operacional de uma nanorrede de distribuição em corrente contínua utilizando software de business intelligence [In Portuguese; Development of a tool for the operational analysis of a direct current distribution nanogrid using business intelligence software]. Bachelor’s thesis, Federal University of Pará, Brasil, 2022.

A. C. Fonseca. Qualidade da energia elétrica de uma nanorrede de distribuição em corrente contínua sob diferentes condições operacionais [In Portuguese; Electrical power quality of a direct current distribution nanogrid under different operating conditions]. Master’s thesis, Federal University of Pará, Brasil, 2023.

V. P. O. Alves. Impactos de cargas motrizes na qualidade de energia e eficiência energética em uma nanorrede de distribuição em corrente contínua [In Portuguese; Impacts of motor loads on power quality and energy efficiency in a distribution and direct current nanogrid]. Master’s thesis, Federal University of Pará, Brasil, 2024.

H. Alrajoubi, S. Oncu, S. Kivrak. An MPPT controlled BLDC motor driven water pumping system. In 2021 10th International Conference on Renewable Energy Research and Application (ICRERA), pp. 116–119. 2021. https://doi.org/10.1109/ICRERA52334.2021.9598595

H. Ammar, N. Benbaha, S. E. Boukebbous. P&O control of a photovoltaic pumping system to efficiency improvement using PSIM. In 2017 International Renewable and Sustainable Energy Conference (IRSEC), pp. 1–5. 2017. https://doi.org/10.1109/IRSEC.2017.8477404

R. Rakhmawati, F. Dwi Murdianto, M. Wildan Alim. Soft starting & performance evaluation of PI speed controller for brushless DC motor using three phase six step inverter. In 2018 International Seminar on Application for Technology of Information and Communication, pp. 121–126. 2018. https://doi.org/10.1109/ISEMANTIC.2018.8549749

Central Bank of Brazil (BCB). Histórico: meta de inflação vs. inflação efetiva [In Portuguese; History of inflation targets], 2024. [2025-01-10]. https://www.bcb.gov.br/controleinflacao/historicometas

National Agency of Petroleum, Natural Gas and Biofuels (ANP). Série histórica do levantamento de preços [In Portuguese; Historical series of price surveys], 2025. [2025-01-10]. https://www.gov.br/anp/pt-br/assuntos/precos-edefesa-da-concorrencia/precos/precos-revenda-ede-distribuicao-combustiveis/serie-historicado-levantamento-de-precos

Ministry of Science, Technology and Innovation (MCTI). Carbon dioxide emissions from fuel burning: Top-down approach. Reference reports: Energy sector. 2nd Brazilian inventory of anthropogenic emissions and removals of greenhouse gases, 2010.

Brazilian Federal Government – Secretariat for Assessment, Information Management and Single Registry. Riverside families registered in the Single Registry – by per capita income range (as of March 2023), 2024. [2025-01-10]. https://aplicacoes.cidadania.gov.br/vis/data3/v.php?q%5B%5D=oNOclsLerpibuKep3bV%2Fg7Ne086v16Km2ffJsKw%3D

C. R. de Souza, A. B. Baldoni, H. Tonini, et al. Ecological patterns and conservation opportunities with carbon credits in Brazil nut groves: A study-case in the Southeast Amazon. CERNE 29:e–103164, 2023. https://doi.org/10.1590/01047760202329013164

T. A. P. West, J. Börner, E. O. Sills, A. Kontoleon. Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon. Proceedings of the National Academy of Sciences 117(39):24188–24194, 2020. https://doi.org/10.1073/pnas.2004334117

Presidency of the Republic, Civil House, Special Secretariat for Legal Affairs. LEI Nº 15.042 [In Portuguese], 2024. https://www.planalto.gov.br/ccivil_03/_ato2023-2026/2024/lei/L15042.htm

L. C. Silva, E. J. G. de Araújo, R. de Angeli Curto, et al. Estoques de biomassa e carbono em unidade de conservação no bioma mata atlântica [In Portuguese; Biomass and carbon stocks in a conservation unit in the atlantic forest biome]. Biofix Scientific Journal 3(2):243–251, 2018. https://doi.org/10.5380/biofix.v3i2.59592

Downloads

Published

2025-09-10

Issue

Section

Articles

How to Cite

Parente de Oliveira Alves, V., Negrão Macêdo, W., & André Barros Galhardo, M. (2025). Direct current nanogrid providing energy for water pumping: a comparative study in a riverside community in the Amazon. Acta Polytechnica, 65(4), 454-466. https://doi.org/10.14311/AP.2025.65.0454