Quantum graphs featuring unusual self-adjoint extensions

Authors

  • Pavel Exner Czech Technical University in Prague, Doppler Institute for Mathematical Physics and Applied Mathematics, Břehová 7, 115 19 Prague, Czech Republic; Czech Academy of Sciences, Nuclear Physics Institute ASCR, Department of Theoretical Physics, 250 68 Řež, Czech Republic

DOI:

https://doi.org/10.14311/AP.2025.65.0539

Keywords:

quantum graphs, self-adjoint extensions, discrete spectrum

Abstract

We present an example of a simple quantum graph with “vertices at infinity”, which appear due a strongly attractive potential making the spectral problem quantum-mechanically incomplete. We construct the appropriate self-adjoint extensions of the formal graph Hamiltonian, and derive their spectral properties.

Downloads

Download data is not yet available.

References

L. Pauling. The diamagnetic anisotropy of aromatic molecules. The Journal of Chemical Physics 4(10):673–677, 1936. https://doi.org/10.1063/1.1749766

G. Berkolaiko, P. Kuchment. Introduction to quantum graphs. American Mathematical Society, Providence, Rhode Island, USA, 2013. ISBN 978-0-8218-9211-4.

A. Kostenko, N. Nicolussi. Laplacians on infinite graphs. European Mathematical Society Press, Berlin, Germany, 2023. https://doi.org/10.4171/MEMS/3

P. Kurasov. Spectral geometry of graphs. Birkhäuser, Berlin, Germany, 2024. ISBN 978-3-662-67870-1. https://doi.org/10.1007/978-3-662-67872-5

M. Reed, B. Simon. Methods of modern mathematical physics. II. Fourier analysis. Self-adjointness. Academic Press, New York, USA, 1975. ISBN 978-0125850025.

P. Exner, T. Ichinose, J. Klauder. On the Schrödinger operator with a negative quartic potential. In preparation.

N. Dunford, J. T. Schwartz. Linear operators. Part II: Spectral theory. Interscience, New York, USA, 1963. ISBN 13-978-0471608479.

J. Weidmann. Linear operators in Hilbert spaces. Springer, New York, USA, 1980. ISBN 978-1461260295.

S. Albeverio, K. Pankrashkin. A remark on Krein’s resolvent formula and boundary conditions. Journal of Physics A: Mathematical and General 38(22):4859, 2005. https://doi.org/10.1088/0305-4470/38/22/010

J. Behrndt, S. Hassi, H. de Snoo. Boundary value problems, Weyl functions, and differential operators. Birkhäuser, Cham, Germany, 2020. ISBN 978-3-030-36713-8. https://doi.org/10.1007/978-3-030-36714-5

F. W. J. Olver. Asymptotics and special functions. CRC Press, New York, USA, 1st edn., 1997. https://doi.org/10.1201/9781439864548

O. Turek, T. Cheon. Quantum graph vertices with permutation-symmetric scattering probabilities. Physics Letters A 375(43):3775–3780, 2011. https://doi.org/10.1016/j.physleta.2011.09.006

P. J. Davis. Circulant matrices. Wiley, New York, USA, 1979.

M. Astudillo, P. Kurasov, M. Usman. RT -symmetric Laplace operators on star graphs: Real spectrum and self-adjointness. Advances in Mathematical Physics 2015(1):649795, 2015. https://doi.org/10.1155/2015/649795

C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Physical Review Letters 80:5243–5246, 1998. https://doi.org/10.1103/PhysRevLett.80.5243

P. Exner, M. Tater. Quantum graphs: Self-adjoint, and yet exhibiting a nontrivial PT -symmetry. Physics Letters A 416:127669, 2021. https://doi.org/10.1016/j.physleta.2021.127669

Downloads

Published

2025-11-07

Issue

Section

Prof. M. Havlíček Memorial Issue

How to Cite

Exner, P. (2025). Quantum graphs featuring unusual self-adjoint extensions. Acta Polytechnica, 65(5), 539-545. https://doi.org/10.14311/AP.2025.65.0539