Quantum graphs featuring unusual self-adjoint extensions
DOI:
https://doi.org/10.14311/AP.2025.65.0539Keywords:
quantum graphs, self-adjoint extensions, discrete spectrumAbstract
We present an example of a simple quantum graph with “vertices at infinity”, which appear due a strongly attractive potential making the spectral problem quantum-mechanically incomplete. We construct the appropriate self-adjoint extensions of the formal graph Hamiltonian, and derive their spectral properties.
Downloads
References
L. Pauling. The diamagnetic anisotropy of aromatic molecules. The Journal of Chemical Physics 4(10):673–677, 1936. https://doi.org/10.1063/1.1749766
G. Berkolaiko, P. Kuchment. Introduction to quantum graphs. American Mathematical Society, Providence, Rhode Island, USA, 2013. ISBN 978-0-8218-9211-4.
A. Kostenko, N. Nicolussi. Laplacians on infinite graphs. European Mathematical Society Press, Berlin, Germany, 2023. https://doi.org/10.4171/MEMS/3
P. Kurasov. Spectral geometry of graphs. Birkhäuser, Berlin, Germany, 2024. ISBN 978-3-662-67870-1. https://doi.org/10.1007/978-3-662-67872-5
M. Reed, B. Simon. Methods of modern mathematical physics. II. Fourier analysis. Self-adjointness. Academic Press, New York, USA, 1975. ISBN 978-0125850025.
P. Exner, T. Ichinose, J. Klauder. On the Schrödinger operator with a negative quartic potential. In preparation.
N. Dunford, J. T. Schwartz. Linear operators. Part II: Spectral theory. Interscience, New York, USA, 1963. ISBN 13-978-0471608479.
J. Weidmann. Linear operators in Hilbert spaces. Springer, New York, USA, 1980. ISBN 978-1461260295.
S. Albeverio, K. Pankrashkin. A remark on Krein’s resolvent formula and boundary conditions. Journal of Physics A: Mathematical and General 38(22):4859, 2005. https://doi.org/10.1088/0305-4470/38/22/010
J. Behrndt, S. Hassi, H. de Snoo. Boundary value problems, Weyl functions, and differential operators. Birkhäuser, Cham, Germany, 2020. ISBN 978-3-030-36713-8. https://doi.org/10.1007/978-3-030-36714-5
F. W. J. Olver. Asymptotics and special functions. CRC Press, New York, USA, 1st edn., 1997. https://doi.org/10.1201/9781439864548
O. Turek, T. Cheon. Quantum graph vertices with permutation-symmetric scattering probabilities. Physics Letters A 375(43):3775–3780, 2011. https://doi.org/10.1016/j.physleta.2011.09.006
P. J. Davis. Circulant matrices. Wiley, New York, USA, 1979.
M. Astudillo, P. Kurasov, M. Usman. RT -symmetric Laplace operators on star graphs: Real spectrum and self-adjointness. Advances in Mathematical Physics 2015(1):649795, 2015. https://doi.org/10.1155/2015/649795
C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Physical Review Letters 80:5243–5246, 1998. https://doi.org/10.1103/PhysRevLett.80.5243
P. Exner, M. Tater. Quantum graphs: Self-adjoint, and yet exhibiting a nontrivial PT -symmetry. Physics Letters A 416:127669, 2021. https://doi.org/10.1016/j.physleta.2021.127669
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Pavel Exner

This work is licensed under a Creative Commons Attribution 4.0 International License.


