Research activities in the Czech Republic focusing on materials and technologies for advanced helium-cooled nuclear reactors
DOI:
https://doi.org/10.14311/AP.2025.65.0578Keywords:
very high-temperature reactor, VHTR, gas-cooled fast reactor, GFR, nuclear structure materials, nuclear technologies, corrosion, gasket, helium, S-Allegro, reactor safetyAbstract
Organisations in the Czech Republic are involved in international research and development of advanced helium-cooled nuclear reactors, including both the very-high-temperature reactors (VHTRs) and the gas-cooled fast reactors (GFRs). To support this effort, a dedicated research infrastructure has been developed and constructed, incorporating large-scale facilities, such as the High-Temperature Helium Loop (HTHL), the S-Allegro helium loop, and other specialised equipment. Current studies are investigating the resistance of structural materials in high-temperature helium environments. Various metallic alloys and ceramic materials intended for high-temperature applications are tested at 750–900 °C. Additional activities focus on helium-coolant technologies – particularly purification, purity monitoring, recovery, and primary-circuit sealing – and on reactor safety and system behaviour under off-normal and emergency conditions.
Downloads
References
U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum. Technology roadmap update for generation IV nuclear energy systems, 2014. [2025-03-14]. https://www.gen-4.org/gif/upload/docs/application/pdf/2014-03/gif-tru2014.pdf
J. Berka, I. Víden. Vědecká infrastruktura pro výzkum materiálů a technologií pro pokročilé plynem chlazené reaktory v ČR [In Czech; Scientific infrastructure for investigation of materials and technologies of advanced gas cooled reactors in Czech Republic]. Paliva 6(1):7–19, 2014. https://doi.org/10.35933/paliva.2014.01.02
I. L. Pioro (ed.). Handbook of Generation IV Nuclear Reactors. Woodhead Publishing Series in Energy. Woodhead Publishing, 2nd edn., 2023. ISBN 978-0-12-820588-4. https://doi.org/10.1016/C2019-0-01219-8
World Nuclear News. China’s demonstration HTR-PM enters commercial operation, 2023. [2025-03-17]. https://www.world-nuclear-news.org/Articles/Chinese-HTR-PM-Demo-begins-commercial-operation
J. Guo, Y. Wang, F. Xie, et al. Chemical states and reactions of typical nuclides in the primary circuit under normal conditions of HTR-PM. Journal of Nuclear Materials 608:155741, 2025. https://doi.org/10.1016/j.jnucmat.2025.155741
B. Kvizda, G. Mayer, P. Vácha, et al. ALLEGRO Gas-cooled Fast Reactor (GFR) demonstrator thermal hydraulic benchmark. Nuclear Engineering and Design 345:47–61, 2019. https://doi.org/10.1016/j.nucengdes.2019.02.006
ÚJV Řež. HeFASTo – Concept of advanced modular reactor for the future. [2025-03-18]. https://www.ujv.cz/en/products-and-services-1/research-development/hefasto
J. Berka, J. Petrů. Odolnost niklových slitin určených pro přesné odlévání ve vysokoteplotním plynném médiu [In Czech; Degradation of nickel-based alloys for precise casting in high-temperature gas environment]. Paliva 13(2):35–41, 2021. https://doi.org/10.35933/paliva.2021.02.02
S. Knol, M. A. Fütterer, F. Roelofs, et al. The ARCHER project (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D). Nuclear Engineering and Design 306:208–214, 2016. https://doi.org/10.1016/j.nucengdes.2016.03.014
SafeG. General information. [2025-03-18]. https://www.safeg.eu/overview/general-information
K. Natesan, A. Purohit, S. W. Tam. Materials behavior in HTGR environments. Tech. Rep. NUREG/CR-6824, U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Washington, USA, 2003.
C. Cabet, B. Duprey. Long term oxidation resistance of alloys for gas-cooled reactors. Nuclear Engineering and Design 251:139–145, 2012. https://doi.org/10.1016/j.nucengdes.2011.11.001
J. Berka, J. Matěcha, M. Černý, et al. New experimental device for VHTR structural material testing and helium coolant chemistry investigation – High temperature helium loop in NRI Řež. Nuclear Engineering and Design 251:203–207, 2012. https://doi.org/10.1016/j.nucengdes.2011.10.045
J. Berka, T. Hlinčík, I. Víden, et al. The design and utilization of a high-temperature helium loop and other facilities for the study of advanced gas-cooled reactors in the Czech Republic. Progress in Nuclear Energy 85:156–163, 2015. https://doi.org/10.1016/j.pnucene.2015.06.003
J. Berka. Testování konstrukčních materiálů pro vysokoteplotní plynem chlazené reaktory [In Czech; Testing of structural materials for high temperature gas cooled reactors]. Paliva 5(4):136–141, 2013. https://doi.org/10.35933/paliva.2013.04.05
J. Berka, M. Vilémová, P. Sajdl. Testing of degradation of alloy 800 H in impure helium at 760 °C. Journal of Nuclear Materials 464:221–229, 2015. https://doi.org/10.1016/j.jnucmat.2015.03.054
K. Fitzgerald, D. Shepherd. Review of SiCf/SiCm corrosion, erosion and erosion-corrosion in high temperature helium relevant to GFR conditions. Journal of Nuclear Materials 498:476–494, 2018. https://doi.org/10.1016/j.jnucmat.2017.09.010
J. Kočí, J. Hamáček, J. Kutzendörfer, et al. Effect of high-temperature inert gas atmosphere on the thermal stability of advanced refractory materials. Ceramics-Silikáty 66(2):228–235, 2022. https://doi.org/10.13168/cs.2022.0017
T. Hlinčík, J. Berka, J. Kutzendörfer, et al. The effect of long-term exposure to high temperature atmosphere on the mechanical properties of Al2O3-based ceramic materials. Ceramics-Silikáty 64(1):35–39, 2020. https://doi.org/10.13168/cs.2019.0046
J. Kočí, J. Hamáček, J. Macháček, et al. Effect of long-term high-temperature exposure in a controlled atmosphere on mullite-corundum ceramics for advanced applications in nuclear power technology. Ceramics International 50(13, Part B):24273–24280, 2024. https://doi.org/10.1016/j.ceramint.2024.04.157
M. S. Yao, R. P. Wang, Z. Y. Liu, et al. The helium purification system of the HTR-10. Nuclear Engineering and Design 218(1):163–167, 2002. https://doi.org/10.1016/S0029-5493(02)00187-5
M. Staf, L. Šnajdárek, T. Hlinčík. A gasket design suitable for helium circuits of generation IV gas-cooled reactors. Annals of Nuclear Energy 200:110383, 2024. https://doi.org/10.1016/j.anucene.2024.110383
J. Matěcha, J. Berka, F. Sus, et al. Testing of analytical and purification methods for HTR helium coolant. Nuclear Engineering and Design 251:208–215, 2012. https://doi.org/10.1016/j.nucengdes.2011.10.044
MICo Servis. [2025-03-17]. https://micoservis.cz/
M. Staf, D. Tenkrát, T. Hlinčík. Apparatus for testing he leakage through flange gaskets at elevated pressure and temperature. Progress in Nuclear Energy 139:103831, 2021. https://doi.org/10.1016/j.pnucene.2021.103831
T. Hlinčík, D. Tenkrát, M. Staf. The measurement of helium leakages through flange gaskets for gas-cooled fast reactors. Nuclear Engineering and Design 367:110783, 2020. https://doi.org/10.1016/j.nucengdes.2020.110783
Z. Dai, J. Deng, X. He, et al. Helium separation using membrane technology: Recent advances and perspectives. Separation and Purification Technology 274:119044, 2021. https://doi.org/10.1016/j.seppur.2021.119044
Evonik Industries. SEPURAN® Noble | Membranes for efficient helium recovery. [2025-12-27]. https://www.membrane-separation.com/en/helium
Airproducts. PRISM® membrane separators for oxygen-enriched air applications. [2025-12-27]. https://membranesolutions.blog/wp-content/uploads/2016/06/oxygenenrichedairbrochure.pdf
L. Bělovský, J. Berka, O. Burian, et al. The proposal of helium separation device for GFR reactors. Tech. Rep. TH02020578, Technologická agentura ČR, 2020.
ATEKO a.s. S-ALLEGRO experimental helium loop, 2020. [2025-03-21]. https://www.ateko.cz/media/cache/file/a9/ATEKO_S_ALLEGRO_Experimental_Helium_Loop_2020.pdf
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Jan Berka, Tereza Válková, Jan Vít, Tomáš Melichar, Tomáš Hlinčík

This work is licensed under a Creative Commons Attribution 4.0 International License.


