Experimental investigation of the effect of test speed on rupture performance of synthetic yarns
DOI:
https://doi.org/10.14311/10.14311/AP.2025.65.0589Keywords:
yarn break load (YBL) test, synthetic fibres, test velocity evaluation, mechanical behaviour, constitutive curves, test parameter, constant rate of extension (CRE)Abstract
This study experimentally investigated the effect of testing speed on the mechanical behaviour of five types of synthetic fibres – aramid, high-modulus polyethylene (HMPE), liquid crystal polymer (LCP), polyamide, and polyester – through yarn break load (YBL) tests, ISO 2062. Twelve different speeds were evaluated, ranging from 50 to 1 000 mm min−1. The discrete rupture force and rupture strain results were stable and showed no statistically significant variations as a function of speed, which was reflected in the fitted mathematical models exhibiting stabilised curves across the studied range. The stress-strain curves also showed a high degree of similarity, with a particular emphasis on LCP, which demonstrated extremely consistent behaviour across all tested speeds. For HMPE, a slight trend of increased strain at lower speeds was observed, attributed to its viscoelastic nature. The tangent modulus curves revealed more noticeable variations in the initial tangent modulus response for each fibre, where lower speeds resulted in steeper slopes, indicating a greater instantaneous stiffness. It is concluded that, although the testing speed does not affect the overall rupture parameters (rupture force and strain), it can influence the behaviour in the initial regions, particularly regarding the determination of modulus and stiffness.
Downloads
References
H. A. McKenna, J. W. S. Hearle, N. O’Hear. Handbook of fibre rope technology. Woodhead Publishing, Sawston, Cambridge, UK, 2004. https://doi.org/10.1533/9781855739932
J. F. Flory, J. Hearle, H. McKenna, M. Parsey. About 75 years of synthetic fiber rope history. In OCEANS 2015 – MTS/IEEE Washington, pp. 1–13. 2015. https://doi.org/10.23919/OCEANS.2015.7404500
A. R. Horrocks, S. C. Anand (eds.). Handbook of technical textiles. Woodhead Publishing Series in Textiles. Woodhead Publishing, 2nd edn., 2016. https://doi.org/10.1016/C2015-0-01011-5
S. M. Rangappa, V. Ayyappan, G. Manik, S. Siengchin (eds.). Synthetic and mineral fibers, their composites and applications. Woodhead Publishing in Materials. Woodhead Publishing, 2024. https://doi.org/10.1016/C2022-0-02636-2
L. Z. Linganiso, R. D. Anandjiwala. 4 – Fibre-reinforced laminates in aerospace engineering. In S. Rana, R. Fangueiro (eds.), Advanced Composite Materials for Aerospace Engineering, pp. 101–127. Woodhead Publishing, 2016. https://doi.org/10.1016/B978-0-08-100037-3.00004-3
M. Puttegowda, S. M. Rangappa, M. Jawaid, et al. 15 – Potential of natural/synthetic hybrid composites for aerospace applications. In M. Jawaid, M. Thariq (eds.), Sustainable Composites for Aerospace Applications, Woodhead Publishing Series in Composites Science and Engineering, pp. 315–351. Woodhead Publishing, 2018. https://doi.org/10.1016/B978-0-08-102131-6.00021-9
S. D. Kumar, R. Samvel, M. Aravindh, et al. Ballistic studies on synthetic fibre reinforced polymer composites and it’s applications – A brief review. Materials Today: Proceedings 2023. [In Press]. https://doi.org/10.1016/j.matpr.2023.03.679
R. E. Abhari, J. A. Martins, H. L. Morris, et al. Synthetic sutures: Clinical evaluation and future developments. Journal of Biomaterials Applications 32(3):410–421, 2017. https://doi.org/10.1177/0885328217720641
C. J. M. Del Vecchio. Light weight materials for deep water moorings. Ph.D. thesis, University of Reading, Reading, UK, 1992.
M.-Y. Lee, J. Flory, R. Yam. ABS guide for synthetic ropes in offshore mooring applications. In Offshore Technology Conference, p. OTC-10910-MS. 1999. https://doi.org/10.4043/10910-MS
P. Davies, P. Baron, K. Salomon, et al. Influence of fibre stiffness on deepwater mooring line response. In 27th International Conference on Offshore Mechanics and Arctic Engineering, pp. 179–187. Estoril, Portugal, 2008. https://doi.org/10.1115/OMAE2008-57147
C. T. Kwan, P. Devlin, P.-L. Tan, K. Huang. Stiffness modeling, testing, and global analysis for polyester mooring. In 31st International Conference on Ocean, Offshore and Arctic Engineering, pp. 777–785. Rio de Janeiro, Brazil, 2012. https://doi.org/10.1115/OMAE2012-84159
M. B. Bastos. Improved high tenacity/high modulus polyester for stiffer mooring ropes. In 2013 MTS/IEEE OCEANS, pp. 1–5. Bergen, Norway, 2013. https://doi.org/10.1109/OCEANS-Bergen.2013.6607949
S. D. Weller, L. Johanning, P. Davies, S. J. Banfield. Synthetic mooring ropes for marine renewable energy applications. Renewable Energy 83:1268–1278, 2015. https://doi.org/10.1016/j.renene.2015.03.058
M. B. Bastos, E. B. Fernandes, A. L. N. da Silva. Performance fibers for deep water offshore mooring ropes: Evaluation and analysis. In OCEANS 2016, pp. 1–7. Shanghai, China, 2016. https://doi.org/10.1109/OCEANSAP.2016.7485612
E. Scala, F. J. Haas. Synthetic ropes and cables: Properties and analysis. In Offshore Technology Conference, p. OTC-5062-MS. 1985. https://doi.org/10.4043/5062-MS
Y. Halabi, H. Xu, Z. Yu, et al. Experimental-based statistical models for the tensile characterization of synthetic fiber ropes: a machine learning approach. Scientific Reports 13(1):17768, 2023. https://doi.org/10.1038/s41598-023-44816-x
ISO 2062:2009. Textiles – Yarns from packages – Determination of single-end breaking force and elongation at break using constant rate of extension (CRE) tester, 2009.
D. M. da Cruz, A. Penaquioni, L. B. Zangalli, et al. Non-destructive testing of high-tenacity polyester sub-ropes for mooring systems. Applied Ocean Research 134:103513, 2023. https://doi.org/10.1016/j.apor.2023.103513
E. L. V. Louzada, C. E. M. Guilherme, F. T. Stumpf. Evaluation of the fatigue response of polyester yarns after the application of abrupt tension loads. Acta Polytechnica CTU Proceedings 7:76–78, 2016. https://doi.org/10.14311/APP.2017.7.0076
F. T. Stumpf, C. E. M. Guilherme, F. E. G. Chimisso. Preliminary assessment of the change in the mechanical behavior of synthetic yarns submitted to consecutive stiffness tests. Acta Polytechnica CTU Proceedings 3:75–77, 2016. https://doi.org/10.14311/APP.2016.3.0075
F. V. de Camargo, C. E. M. Guilherme, C. Fragassa, A. Pavlovic. Cyclic stress analysis of polyester, aramid, polyethylene and liquid crystal polymer yarns. Acta Polytechnica 56(5):402–408, 2016. https://doi.org/10.14311/AP.2016.56.0402
D. M. da Cruz, E. S. Belloni, F. M. Clain, C. E. M. Guilherme. Analysis of impact cycles applied to dry polyamide multifilaments and immersed in water. In Rio Oil & Gas Expo and Conference, p. 199. IBP, Rio de Janeiro, Brazil, 2020. https://doi.org/10.48072/2525-7579.rog.2020.199
E. S. Belloni, F. M. Clain, C. E. M. Guilherme. Post-impact mechanical characterization of HMPE yarns. Acta Polytechnica 61(3):406–414, 2021. https://doi.org/10.14311/AP.2021.61.0406
G. Hahn, A. H. M. F. T. da Silva, F. T. Stumpf, C. E. M. Guilherme. Evaluation of residual strength of polymeric yarns subjected to previous impact loads. Acta Polytechnica 62(4):473–478, 2022. https://doi.org/10.14311/AP.2022.62.0473
I. Melito, D. M. da Cruz, E. S. Belloni, et al. The effects of mechanical degradation on the quasi static and dynamic stiffness of polyester yarns. Engineering Solid Mechanics 11(3):243–252, 2023. https://doi.org/10.5267/j.esm.2023.4.001
D. M. da Cruz, M. A. Barreto, L. B. Zangalli, et al. Mechanical characterization procedure of HMPE fiber for offshore mooring in deep waters. Engineering Solid Mechanics 12(3):311–322, 2024. https://doi.org/10.5267/j.esm.2024.1.003
D. M. da Cruz, T. L. Popiolek Júnior, M. A. Barreto, et al. Numerical simulation with hyperelastic constitutive model for high-performance multifilaments used in offshore mooring ropes. The Journal of Engineering and Exact Sciences 10(2):17255, 2024. https://doi.org/10.18540/jcecvl10iss2pp17255
D. M. da Cruz, I. Melito, A. J. da Cruz Júnior, et al. Assessment of mechanical degradation in polyester fibers for offshore mooring through hydrolysis processes in seawater. Macromolecular Symposia 413(6):2400097, 2024. https://doi.org/10.1002/masy.202400097
E. S. Belloni, D. M. da Cruz, C. E. M. Guilherme. Mechanical behavior evaluation and degradation mechanism for HMPE yarns under fatigue abrasion tests. Engineering Solid Mechanics 13(1):105–116, 2025. https://doi.org/10.5267/j.esm.2024.7.002
D. M. da Cruz, F. M. Clain, C. E. M. Guilherme. Experimental study of the torsional effect for yarn break load test of polymeric multifilaments. Acta Polytechnica 62(5):538–548, 2022. https://doi.org/10.14311/AP.2022.62.0538
D. M. da Cruz, L. B. Zangalli, M. A. Barreto, et al. Offshore mooring challenges for FOWT systems and MRE devices: Synthetic fiber solutions for mooring ropes. In ROG.e 2024, p. 3210. Rio de Janeiro, Brasil, 2024. https://doi.org/10.48072/2525-7579.roge.2024.3210
D. M. da Cruz, F. T. Stumpf, J. M. Vassoler, C. E. M. Guilherme. Assessment of the effects of UV-A exposure on the mechanical strength of offshore mooring multifilaments. Acta Polytechnica 64(6):487–500, 2024. https://doi.org/10.14311/AP.2024.64.0487
M. Ertekin. 7 – Aramid fibers. In M. Özgür Seydibeyoğlu, A. K. Mohanty, M. Misra (eds.), Fiber Technology for Fiber-Reinforced Composites, Woodhead Publishing Series in Composites Science and Engineering, pp. 153–167. Woodhead Publishing, 2017. https://doi.org/10.1016/B978-0-08-101871-2.00007-2
M. Jassal, A. K. Agrawal, D. Gupta, K. Panwar. Aramid fibers. In Handbook of Fibrous Materials, chap. 8, pp. 207–231. John Wiley & Sons, 2020. https://doi.org/10.1002/9783527342587.ch8
K. E. Perepelkin, I. V. Andreeva, E. A. Pakshver, I. Y. Morgoeva. Thermal characteristics of para-aramid fibres. Fibre Chemistry 35(4):265–269, 2003. https://doi.org/10.1023/B:FICH.0000003476.55891.26
I. Okajima, H. Okamoto, T. Sako. Recycling of aramid fiber using subcritical and supercritical water. Polymer Degradation and Stability 162:22–28, 2019. https://doi.org/10.1016/j.polymdegradstab.2019.01.034
K. Wakatsuki, S. Onoda, M. Matsubara, et al. Quantitative assessment of tensile strength and degradation coefficient of m-aramid/p-aramid blended yarns used for outer layers of firefighter clothing under ultraviolet light and correlation with fabrics data. Polymers 14(19):3948, 2022. https://doi.org/10.3390/polym14193948
J. Kalantar, L. T. Drzal. The bonding mechanism of aramid fibres to epoxy matrices. Journal of Materials Science 25(10):4186–4193, 1990. https://doi.org/10.1007/BF00581071
V. S. Matveev, G. A. Budnitskii, G. P. Mashinskaya, et al. Structural and mechanical characteristics of aramid fibres for bullet-proof vests. Fibre Chemistry 29(6):381–384, 1997. https://doi.org/10.1007/BF02418874
P. M. Gore, B. Kandasubramanian. Functionalized aramid fibers and composites for protective applications: A review. Industrial & Engineering Chemistry Research 57(49):16537–16563, 2018. https://doi.org/10.1021/acs.iecr.8b04903
N. M. Nurazzi, M. R. M. Asyraf, A. Khalina, et al. A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers 13(4):646, 2021. https://doi.org/10.3390/polym13040646
B. Zhang, L. Jia, M. Tian, et al. Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review. European Polymer Journal 147:110352, 2021. https://doi.org/10.1016/j.eurpolymj.2021.110352
P. G. Riewald. Performance analysis of an aramid mooring line. In Offshore Technology Conference, p. OTC-5187-MS. Houston, Texas, USA, 1986. https://doi.org/10.4043/5187-MS
K. Shaker, Y. Nawab. Fibers for protective textiles. In S. Ahmad, A. Rasheed, Y. Nawab (eds.), Fibers for Technical Textiles, pp. 65–91. Springer International Publishing, 2020. https://doi.org/10.1007/978-3-030-49224-3_4
W. Huang, B. Li, D. K. Kim. An investigation on material diversity of synthetic fiber ropes in the course stability of towing under wind. Ocean Engineering 279:114410, 2023. https://doi.org/10.1016/j.oceaneng.2023.114410
N. C. Adak, G.-H. Lee, H. T. Tung, et al. Superior high-temperature mechanical and thermal performance of carbon fiber/epoxy composites by incorporating highly dispersed aramid nanofibers. Applied Materials Today 35:101956, 2023. https://doi.org/10.1016/j.apmt.2023.101956
M. Vlasblom. 18 – The manufacture, properties, and applications of high-strength, high-modulus polyethylene fibers. In A. R. Bunsell (ed.), Handbook of Properties of Textile and Technical Fibres, The Textile Institute Book Series, pp. 699–755. Woodhead Publishing, 2nd edn., 2018. https://doi.org/10.1016/B978-0-08-101272-7.00018-3
M. B. Bastos, A. L. N. da Silva. Evaluating offshore rope fibers: Impact on mooring systems integrity and performance. In Offshore Technology Conference, p. OTC-30830-MS. Houston, Texas, USA, 2020. https://doi.org/10.4043/30830-MS
Y. Lian, H. Liu, W. Huang, L. Li. A creep–rupture model of synthetic fiber ropes for deepwater moorings based on thermodynamics. Applied Ocean Research 52:234–244, 2015. https://doi.org/10.1016/j.apor.2015.06.009
Y. Lian, J. Zheng, H. Liu, et al. A study of the creep-rupture behavior of HMPE ropes using viscoelastic-viscoplastic-viscodamage modeling. Ocean Engineering 162:43–54, 2018. https://doi.org/10.1016/j.oceaneng.2018.05.003
P. Davies, Y. Reaud, L. Dussud, P. Woerther. Mechanical behaviour of HMPE and aramid fibre ropes for deep sea handling operations. Ocean Engineering 38(17–18):2208–2214, 2011. https://doi.org/10.1016/j.oceaneng.2011.10.010
L. Carral, J. A. Fraguela, J. de Troya, C. Álvarez-Feal. Influence of the towline material: Steel or high-modulus polyethylene on towing gear design and tug deck fittings. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 230(4):639–651, 2016. https://doi.org/10.1177/1475090215610598
R. Bosman, Q. Zhang, A. Leao, C. Godreau. First class certification on HMPE fiber ropes for permanent floating wind turbine mooring system. In Offshore Technology Conference, p. OTC-30475-MS. Houston, Texas, USA, 2020. https://doi.org/10.4043/30475-MS
Y. Lian, B. Zhang, J. Ji, et al. Experimental investigation on service safety and reliability of full-scale HMPE fiber slings for offshore lifting operations. Ocean Engineering 285:115447, 2023. https://doi.org/10.1016/j.oceaneng.2023.115447
Y. Lian, Z. Pan, J. Zheng, et al. Experimental investigation on mechanical behavior of damaged HMPE mooring ropes under service loads. Marine Structures 101:103760, 2025. https://doi.org/10.1016/j.marstruc.2024.103760
P. Smeets, M. Jacobs, M. Mertens. Creep as a design tool for HMPE ropes in long term marine and offshore applications. In MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings, vol. 2, pp. 685–690. Honolulu, HI, USA, 2001. https://doi.org/10.1109/OCEANS.2001.968205
C. T. Berryman, R. M. Dupin, N. S. Gerrits. Laboratory study of used HMPE MODU mooring lines. In Offshore Technology Conference, p. OTC-14245-MS. Houston, Texas, USA, 2002. https://doi.org/10.4043/14245-MS
S. Leite, J. Boesten. HMPE mooring lines for deepwater MODUs. In Offshore Technology Conference Brasil, p. OTC-22486-MS. Rio de Janeiro, Brazil, 2011. https://doi.org/10.4043/22486-MS
M. Vlasblom, J. Boesten, S. Leite, P. Davies. Creep and stiffness of HMPE fiber for permanent deepwater offshore mooring. In 2012 Oceans – Yeosu, pp. 1–7. Yeosu, South Korea, 2012. https://doi.org/10.1109/OCEANS-Yeosu.2012.6263399
M. Vlasblom, J. Boesten, S. Leite, P. Davies. Development of HMPE fiber for permanent deepwater offshore mooring. In Offshore Technology Conference, p. OTC-23333-MS. Houston, Texas, USA, 2012. https://doi.org/10.4043/23333-MS
D. M. da Cruz, F. P. Fondaik, M. B. Bastos, C. E. M. Guilherme. Creep analysis of high modulus polyethylene (HMPE) multifilaments. In Rio Oil & Gas Expo and Conference, p. 072. Rio de Janeiro, Brasil, 2022. https://doi.org/10.48072/2525-7579.rog.2022.072
D. M. da Cruz, M. A. Barreto, L. B. Zangalli, et al. Experimental study of creep behavior at high temperature in different HMPE fibers used for offshore mooring. In Offshore Technology Conference Brasil, p. OTC-32760-MS. Rio de Janeiro, Brasil, 2023. https://doi.org/10.4043/32760-MS
D. M. da Cruz, S. Hendriks, L. B. Zangalli, et al. Creep-life prediction through mathematical parameterization in low creep HMPE fibers for offshore mooring. In OCEANS 2024 – Halifax, pp. 1–10. Halifax, NS, Canada, 2024. https://doi.org/10.1109/OCEANS55160.2024.10754299
H. N. Yoon, L. F. Charbonneau, G. W. Calundann. Synthesis, processing sand properties of thermotropic liquid-crystal polymers. Advanced Materials 4(3):206–214, 1992. https://doi.org/10.1002/adma.19920040311
F. Sloan. 5 – Liquid crystal aromatic polyester-arylate (LCP) fibers: Structure, properties, and applications. In Structure and Properties of High-Performance Fibers, Woodhead Publishing Series in Textiles, pp. 113–140. Woodhead Publishing, 2017. https://doi.org/10.1016/B978-0-08-100550-7.00005-X
T. Tam, A. Bhatnagar. 7 – High performance ballistic fibers. In A. Bhatnagar (ed.), Lightweight Ballistic Composites, Woodhead Publishing Series in Composites Science and Engineering, pp. 189–209. Woodhead Publishing, 2006. https://doi.org/10.1533/9781845691554.2.189
J. L. West, J. R. Wang, A. Jákli. Airbrushed liquid crystal/polymer fibers for responsive textiles. Advances in Science and Technology 100:43–49, 2017. https://doi.org/10.4028/www.scientific.net/AST.100.43
Z. Zhang, X. Yang, Y. Zhao, et al. Liquid crystal materials for biomedical applications. Advanced Materials 35(36):2300220, 2023. https://doi.org/10.1002/adma.202300220
P. Lyu, M. O. Astam, D. Liu. Unlocking the world of material intelligence with liquid crystal polymers. Liquid Crystals Reviews 12(2):128–148, 2024. https://doi.org/10.1080/21680396.2025.2472163
C. Humeau, P. Davies, P.-Y. LeGac, F. Jacquemin. Influence of water on the short and long term mechanical behaviour of polyamide 6 (nylon) fibres and yarns. Multiscale and Multidisciplinary Modeling, Experiments and Design 1(4):317–327, 2018. https://doi.org/10.1007/s41939-018-0036-6
V. Venoor, J. H. Park, D. O. Kazmer, M. J. Sobkowicz. Understanding the effect of water in polyamides: A review. Polymer Reviews 61(3):598–645, 2021. https://doi.org/10.1080/15583724.2020.1855196
M. M. Brette, A. H. Holm, A. D. Drozdov, J. C. Christiansen. Pure hydrolysis of polyamides: A comparative study. Chemistry 6(1):13–50, 2024. https://doi.org/10.3390/chemistry6010002
A. A. Leal, R. Stämpfli, R. Hufenus. On the analysis of cut resistance in polymer-based climbing ropes: New testing methodology and resulting modes of failure. Polymer Testing 62:254–262, 2017. https://doi.org/10.1016/j.polymertesting.2017.07.004
M. Umair, R. M. W. U. Khan. Fibers for sports textiles. In S. Ahmad, A. Rasheed, Y. Nawab (eds.), Fibers for Technical Textiles, pp. 93–115. Springer International Publishing, 2020. https://doi.org/10.1007/978-3-030-49224-3_5
K. Neha, A. Mukhopadhyay, M. P. Sikka. Performance and behaviour of climbing ropes: A comprehensive review. Research Journal of Textile and Apparel 29(4):979–998, 2025. https://doi.org/10.1108/RJTA-07-2024-0120
H.-D. Pham, P. Cartraud, F. Schoefs, et al. Dynamic modeling of nylon mooring lines for a floating wind turbine. Applied Ocean Research 87:1–8, 2019. https://doi.org/10.1016/j.apor.2019.03.013
Y. Chevillotte, Y. Marco, G. Bles, et al. Fatigue of improved polyamide mooring ropes for floating wind turbines. Ocean Engineering 199:107011, 2020. https://doi.org/10.1016/j.oceaneng.2020.107011
S. H. Sørum, N. Fonseca, M. Kent, R. P. Faria. Assessment of nylon versus polyester ropes for mooring of floating wind turbines. Ocean Engineering 278:114339, 2023. https://doi.org/10.1016/j.oceaneng.2023.114339
S. H. Sørum, N. Fonseca, M. Kent, R. P. Faria. Modelling of synthetic fibre rope mooring for floating offshore wind turbines. Journal of Marine Science and Engineering 11(1):193, 2023. https://doi.org/10.3390/jmse11010193
H. Thuilliez, P. Davies, P. Cartraud, et al. Characterization and modelling of the dynamic stiffness of nylon mooring rope for floating wind turbines. Ocean Engineering 287:115866, 2023. https://doi.org/10.1016/j.oceaneng.2023.115866
D. P. Sudaia, M. B. Bastos, E. B. Fernandes, et al. Sustainable recycling of mooring ropes from decommissioned offshore platforms. Marine Pollution Bulletin 135:357–360, 2018. https://doi.org/10.1016/j.marpolbul.2018.06.066
B. Terry, K. Slater. Comparative analysis of synthetic fibres for marine rope. Journal of Consumer Studies & Home Economics 22(1):19–24, 1998. https://doi.org/10.1111/j.1470-6431.1998.tb00712.x
P. H. L. Peres, C. E. M. Guilherme, H. L. Costa. Wear mechanisms in polymeric mooring ropes during yarn-on-yarn wear tests. Journal of the Brazilian Society of Mechanical Sciences and Engineering 46(11):653, 2024. https://doi.org/10.1007/s40430-024-05214-0
G. Xue, J. L. Koenig, D. D. Wheeler, H. Ishida. Reinforcement mechanism of polyester-fiber-reinforced rubber – A model study. Journal of Applied Polymer Science 28(8):2633–2646, 1983. https://doi.org/10.1002/app.1983.070280815
H. E.-D. M. Saleh. Polyester. IntechOpen, 2012. https://doi.org/10.5772/2748
M. Rabnawaz, I. Wyman, R. Auras, S. Cheng. A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. Green Chemistry 19(20):4737–4753, 2017. https://doi.org/10.1039/C7GC02521A
C. Palacios-Mateo, Y. van der Meer, G. Seide. Analysis of the polyester clothing value chain to identify key intervention points for sustainability. Environmental Sciences Europe 33(1):2, 2021. https://doi.org/10.1186/s12302-020-00447-x
A. Moncada, I. P. Damians, S. Olivella. Thermo-hydro-mechanical viscoplastic constitutive model for polyester strap reinforcement long-term response. Computers and Geotechnics 175:106695, 2024. https://doi.org/10.1016/j.compgeo.2024.106695
R. L. M. Bosman, J. Hooker. The elastic modulus characteristics of polyester mooring ropes. In Offshore Technology Conference, p. OTC-10779-MS. Houston, Texas, USA, 1999. https://doi.org/10.4043/10779-MS
P. Davies, M. François, F. Grosjean, et al. Synthetic mooring lines for depths to 3000 meters. In Offshore Technology Conference, p. OTC-14246-MS. Houston, Texas, USA, 2002. https://doi.org/10.4043/14246-MS
C. Wibner, T. Versavel, I. Masetti. Specifying and testing polyester mooring rope for the barracuda and caratinga FPSO deepwater mooring systems. In Offshore Technology Conference, p. OTC-15139-MS. Houston, Texas, USA, 2003. https://doi.org/10.4043/15139-MS
S. J. Banfield, N. F. Casey, R. Nataraja. Durability of polyester deepwater mooring rope. In Offshore Technology Conference, p. OTC-17510-MS. Houston, Texas, USA, 2005. https://doi.org/10.4043/17510-MS
R. Rossi, C. J. M. Del Vecchio, R. C. F. Gonçalves. SS: Fiber moorings, recent experiences and research: Moorings with polyester ropes in petrobras: Experience and the evolution of life cycle management. In Offshore Technology Conference, p. OTC-20845-MS. Houston, Texas, USA, 2010. https://doi.org/10.4043/20845-MS
H. Saidpour, L. Li, R. Vaseghi. The effect of rope termination on the performance of polyester mooring ropes for marine applications. Ocean Engineering 195:106705, 2020. https://doi.org/10.1016/j.oceaneng.2019.106705
Y. Lian, B. Zhang, J. Zheng, et al. An upper and lower bound method for evaluating residual strengths of polyester mooring ropes with artificial damage. Ocean Engineering 262:112243, 2022. https://doi.org/10.1016/j.oceaneng.2022.112243
H. Zhang, J. Zeng, B. Jin, et al. Experimental study of the nonlinear behaviour of deep-sea mooring polyester fibre ropes. Polish Maritime Research 30(3):153–162, 2023. https://doi.org/10.2478/pomr-2023-0048
J. Zhao, S. Bian, Z. Liu, X. Lin. Polyester mooring system design and evaluation of a semi-platform in south China sea. Marine Structures 99:103686, 2025. https://doi.org/10.1016/j.marstruc.2024.103686
ISO 139:2005. Textiles – Standard atmospheres for conditioning and testing, 2005.
P. W. M. John. Statistical methods in engineering and quality assurance. John Wiley & Sons, New York, NK, USA, 1st edn., 1990. https://doi.org/10.1002/9780470316825
M. Holický. Introduction to probability and statistics for engineers. Springer Berlin, Heidelberg, Berlin, 2013. https://doi.org/10.1007/978-3-642-38300-7
Y. M. Boiko, V. A. Marikhin, L. P. Myasnikova. Tensile strength statistics of high-performance monoand multifilament polymeric materials: On the validity of normality. Polymers 15(11):2529, 2023. https://doi.org/10.3390/polym15112529
J. H. Mathews. Numerical methods for mathematics, science and engineering. Prentice-Hall International, Englewood Cliffs, 2nd edn., 1992.
C. C. Mei. Mathematical Analysis in Engineering: How to Use the Basic Tools. Cambridge University Press, 1997.
R. M. L. R. F. Brasil, J. M. Balthazar, W. Góis. Métodos numéricos e computacionais na prática de engenharias e ciências [In Portuguese; Numerical and computational methods in engineering and science practice]. Editora Edgar Blucher, São Paulo, Brasil, 2015.
D. M. da Cruz, I. Melito, A. J. da Cruz Júnior, et al. Desenvolvimento de código aberto em octave para ajustes de funções através de linearização e MMQ [In Portuguese; Open source development in Octave for function adjustments through linearization and OLS]. E&S Engineering and Science 13(1):1–14, 2024. https://doi.org/10.18607/ES20241316896
M. Vořechovský, R. Chudoba. Stochastic modeling of multi-filament yarns: II. Random properties over the length and size effect. International Journal of Solids and Structures 43(3–4):435–458, 2006. https://doi.org/10.1016/j.ijsolstr.2005.06.062
W. Huang, H. Liu, C. Hu. Modeling the stress-strain properties of synthetic fiber mooring lines under cyclic loading. In Proceedings of the 24th International Ocean and Polar Engineering Conference, pp. 126–133. Busan, Korea, 2014.
N. Nguyen, K. Thiagarajan. Nonlinear viscoelastic modeling of synthetic mooring lines. Marine Structures 85:103257, 2022. https://doi.org/10.1016/j.marstruc.2022.103257
International Organization for Standardization. ISO 2060:1994. Textiles – Yarn from packages – Determination of linear density (mass per unit length) by the skein method, 1994.
A. S. Singh, M. B. Masuku. Assumption and testing of normality for statistical analysis. American Journal of Mathematics and Mathematical Sciences 3(1):169–175, 2014.
U. Knief, W. Forstmeier. Violating the normality assumption may be the lesser of two evils. Behavior Research Methods 53(6):2576–2590, 2021. https://doi.org/10.3758/s13428-021-01587-5
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Daniel Magalhães da Cruz, Ignacio Melito, Tales Luiz Popiolek Júnior, Marcelo de Ávila Barreto, Fernanda Mazuco Clain, Carlos Eduardo Marcos Guilherme

This work is licensed under a Creative Commons Attribution 4.0 International License.


