Unitary generation of GHZ states

Authors

  • Arno Bandilla Humboldt-Universität zu Berlin, Institut für Physik, Arbeitsgruppe “Nichtklassische Strahlung”, Invalidenstr. 110, 10115 Berlin, Germany
  • Goce Chadzitaskos Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Jugoslávských partyzánů 3, 160 00 Prague, Czech Republic
  • Igor Jex Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Jugoslávských partyzánů 3, 160 00 Prague, Czech Republic

DOI:

https://doi.org/10.14311/AP.2025.65.0515

Keywords:

quantum optics

Abstract

Entangled states represent fascinating elements of quantum mechanics and quantum technology. Their generation is an interesting problem combining many techniques developed in quantum optics. Using algebraic properties of special transforms we derive the explicit form of the effective Hamiltonian that enables the generation of highly nonclassical states of the GHZ type. Such Hamiltonians belong to the higher order Hamiltonians often discussed in nonlinear quantum optics. We derive the form of the effective Hamiltonian that enables the generation of highly nonclassical states of the GHZ type.

Downloads

Download data is not yet available.

References

M. Pont, G. Corrielli, A. Fyrillas, et al. High-fidelity four-photon GHZ states on chip. npj Quantum Information 10(1):50, 2024. https://doi.org/10.1038/s41534-024-00830-z

M. Ghaderibaneh, H. Gupta, C. R. Ramakrishnan. Generation and distribution of GHZ states in quantum networks. In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), vol. 1, pp. 1120–1131. Bellevue, WA USA, 2023. https://doi.org/10.1109/QCE57702.2023.00127

J. Peřina. Quantum theory of linear and nonlinear optical phenomena. Dordrecht, North Holland, 1984. ISBN 90-277-1512-2.

E. Wolf, L. Mandel. Optical coherence and quantum optics. Cambridge University Press, 1995. ISBN 0-521-41711-2. https://doi.org/10.1017/CBO9781139644105

A. Einstein, B. Podolsky, N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Physical Review 47(10):777–780, 1935. https://doi.org/10.1103/PhysRev.47.777

D. M. Greenberger, M. A. Horne, A. Zeilinger. Going beyond Bell’s theorem. In M. Kafatos (ed.), Bell’s theorem, quantum theory and conceptions of the universe, vol. 37, pp. 69–72. Kluwer Academic Publishers, 1989. https://doi.org/10.1007/978-94-017-0849-4_10

K. Vogel, V. M. Akulin, W. P. Schleich. Quantum state engineering of the radiation field. Physical Review Letters 71(12):1816–1819, 1993. https://doi.org/10.1103/PhysRevLett.71.1816

W. E. Lamb. An operational interpretation of nonrelativistic quantum mechanics. Physics Today 22(4):22–28, 1969. https://doi.org/10.1063/1.3035523

R. Loudon, P. L. Knight. Squeezed light. Journal of Modern Optics 34(6–7):709–759, 1987. https://doi.org/10.1080/09500348714550721

H. Paul. Induzierte Emission bei starker Einstrahlung [In German; Induced emission under strong irradiation]. Annalen der Physik 466(7–8):411–412, 1963. https://doi.org/10.1002/andp.19634660710

E. T. Jaynes, F. W. Cummings. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE 51(1):89–109, 1963. https://doi.org/10.1109/PROC.1963.1664

Downloads

Published

2025-11-07

Issue

Section

Prof. M. Havlíček Memorial Issue

How to Cite

Bandilla, A., Chadzitaskos, G., & Jex, I. (2025). Unitary generation of GHZ states. Acta Polytechnica, 65(5), 515-519. https://doi.org/10.14311/AP.2025.65.0515