Pareto Principle in Datamining: an Above-Average Fencing Algorithm

K. Macek


This paper formulates a new datamining problem: which subset of input space has the relatively highest output where the minimal size of this subset is given. This can be useful where usual datamining methods fail because of error distribution asymmetry. The paper provides a novel algorithm for this datamining problem, and compares it with clustering of above-average individuals.


ART; Pareto principle; insurance risk

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague