Gearbox Condition Monitoring Using Advanced Classifiers

P. Večeř, M. Kreidl, R. Šmíd

Abstract


New efficient and reliable methods for gearbox diagnostics are needed in automotive industry because of growing demand for production quality. This paper presents the application of two different classifiers for gearbox diagnostics – Kohonen Neural Networks and the Adaptive-Network-based Fuzzy Interface System (ANFIS). Two different practical applications are presented. In the first application, the tested gearboxes are separated into two classes according to their condition indicators. In the second example, ANFIS is applied to label the tested gearboxes with a Quality Index according to the condition indicators. In both applications, the condition indicators were computed from the vibration of the gearbox housing. 

Keywords


diagnostics; automotive gearbox; Kohonen Neural Network; self-organizing map; ANFIS; classification system; data pre-processing

Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague