Thermal Entanglement and Critical Behavior of Magnetic Properties on a Triangulated Kagomé Lattice

Authors

  • N. Ananikian
  • L. Ananikyan
  • L. Chakhmakhchyan
  • A. Kocharian

DOI:

https://doi.org/10.14311/1344

Keywords:

Triangulated Kagomé lattice, Ising-Heisenberg model, Gibbs-Bogoliubov inequality, entanglement, concurrence

Abstract

The equilibrium magnetic and entanglement properties in a spin-1/2 Ising-Heisenberg model on a triangulated Kagomé lattice are analyzed by means of the effective field for the Gibbs-Bogoliubov inequality. The calculation is reduced to decoupled individual (clusters) trimers due to the separable character of the Ising-type exchange interactions between the Heisenberg trimers. The concurrence in terms of the three qubit isotropic Heisenberg model in the effective Ising field in the absence of a magnetic field is non-zero. The magnetic and entanglement properties exhibit common (plateau, peak) features driven by a magnetic field and (antiferromagnetic) exchange interaction. The (quantum) entangled and non-entangled phases can be exploited as a useful tool for signalling the quantum phase transitions and crossovers at finite temperatures. The critical temperature of order-disorder coincides with the threshold temperature of thermal entanglement.

Downloads

Published

2011-01-02

Issue

Section

Articles