Extensions of Effect Algebra Operations

Z. Riečanová, M. Zajac


We study the set of all positive linear operators densely defined in an infinite-dimensional complex Hilbert space. We equip this set with various effect algebraic operations making it a generalized effect algebra. Further, sub-generalized effect algebras and interval effect algebras with respect of these operations are investigated.


generalized effect algebra; effect algebra; Hilbert space; densely defined linear operators; extension of operations

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague