Synthesis of Mechanisms by Methods of Nonlinear Dynamics

Michael Valášek, Zbynek Šika

Abstract


This paper deals with a new method for parametric kinematic synthesis of mechanisms. The traditional synthesis procedure based on collocation, correction and optimization suffers from the local minima of objective functions, usually due to the local unassembled configurations which must be overcome. The new method uses the time varying values of the synthesized dimensions of the mechanism as if the mechanism had elastic links and guidances. The time varying dimensions form the basis for an accompanying nonlinear dynamical dissipative system and the synthesis is transformed into the time evolution of this accompanying dynamical system. Its dissipativity guarantees the termination of thesynthesis. The synthesis always covers the parametric kinematic synthesis, but it can be advantageously extended into the optimization of any further criteria. The main advantage of the method described here for dealing with mechanism synthesis is that it overcomes the unassembled configurations of the synthesized mechanisms and enables any further synthesis criteria to be introduced, and terminates due to dissipation of the accompanied dynamical system.

Keywords


synthesis of mechanisms; time varying dimensions; evolution of dissipative systems; multi-objective optimization; dexterity; workspace; built-up space

Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague