CURRENT WAYS TO HARVEST ENERGY USING A COMPUTER MOUSE

Frantisek Horvat, Michal Cekan, Lukas Soltes, Peter Biath, Branislav Hucko, Igor Jedinak

Abstract


This paper deals with the idea of an energy harvesting (EH) system that uses the mechanical energy from finger presses on the buttons of a computer mouse by means of a piezomaterial (PVF2). The piezomaterial is placed in the mouse at the interface between the button and the body. This paper reviews the parameters of the PVF2 piezomaterial and tests their possible implementation into EH systems utilizing these types of mechanical interactions. The paper tests the viability of two EH concepts: a battery management system, and a semi-autonomous system. A statistical estimate of the button operations is performed for various computer activities, showing that an average of up to 3300 mouse clicks per hour was produced for gaming applications, representing a tip frequency of 0.91 Hz on the PVF2 member. This frequency is tested on the PVF2 system, and an assessment of the two EH systems is reviewed. The results show that fully autonomous systems are not suitable for capturing low-frequency mechanical interactions, due to the parameters of current piezomaterials, and the resulting very long startup phase. However, a hybrid EH system which uses available power to initiate the circuit and eliminate the startup phase may be explored for future studies.

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague