A BOSE-EINSTEIN CONDENSATE WITH PT-SYMMETRIC DOUBLE-DELTA FUNCTION LOSS AND GAIN IN A HARMONIC TRAP: A TEST OF RIGOROUS ESTIMATES
DOI:
https://doi.org/10.14311/AP.2014.54.0116Abstract
We consider the linear and nonlinear Schrödinger equation for a Bose-Einstein condensate in a harmonic trap with PT-symmetric double-delta function loss and gain terms. We verify that the conditions for the applicability of a recent proposition by Mityagin and Siegl on singular perturbations of harmonic oscillator type self-adjoint operators are fulfilled. In both the linear and nonlinear case we calculate numerically the shifts of the unperturbed levels with quantum numbers n of up to 89 in dependence on the strength of the non-Hermiticity and compare with rigorous estimates derived by those authors. We confirm that the predicted 1/n1/2 estimate provides a valid upper bound on the shrink rate of the numerical eigenvalues. Moreover, we find that a more recent estimate of log(n)/n3/2 is in excellent agreement with the numerical results. With nonlinearity the shrink rates are found to be smaller than without nonlinearity, and the rigorous estimates, derived only for the linear case, are no longer applicable.Downloads
Download data is not yet available.
Downloads
Published
2014-04-30
Issue
Section
Articles
How to Cite
Haag, D., Cartarius, H., & Wunner, G. (2014). A BOSE-EINSTEIN CONDENSATE WITH PT-SYMMETRIC DOUBLE-DELTA FUNCTION LOSS AND GAIN IN A HARMONIC TRAP: A TEST OF RIGOROUS ESTIMATES. Acta Polytechnica, 54(2), 116-121. https://doi.org/10.14311/AP.2014.54.0116
Received 2014-04-30
Accepted 2014-04-30
Published 2014-04-30
Accepted 2014-04-30
Published 2014-04-30