POLYMERS CONTAINING Cu NANOPARTICLES IRRADIATED BY LASER TO ENHANCE THE ION ACCELERATION

Mariapompea Cutroneo, Lorenzo Torrisi, Anna Mackova, Andriy Velyhan

Abstract


Target Normal Sheath Acceleration method was employed at PALS to accelerate ions from laser-generated plasma at intensities above 1015 W/cm2. Laser parameters, irradiation conditions and target geometry and composition control the plasma properties and the electric field driving the ion acceleration. Cu nanoparticles deposited on the polymer promote resonant absorption effects increasing the plasma electron density and enhancing the proton acceleration. Protons can be accelerated in forward direction at kinetic energies up to about 3.5 MeV. The optimal target thickness, the maximum acceleration energy and the angular distribution of emitted particles have been measured using ion collectors, X-ray CCD streak camera, SiC detectors and Thomson Parabola Spectrometer.


Keywords


TNSA; hydrogenated target; resonant absorption

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague