COVARIANT INTEGRAL QUANTIZATIONS AND THEIR APPLICATIONS TO QUANTUM COSMOLOGY

Jean-Pierre Gazeau

Abstract


We present a general formalism for giving a measure space paired with a separable Hilbert space a quantum version based on a normalized positive operator-valued measure. The latter are built from families of density operators labeled by points of the measure space. We especially focus on group representation and probabilistic aspects of these constructions. Simple phase space examples illustrate the procedure: plane (Weyl-Heisenberg symmetry), half-plane (affine symmetry). Interesting applications to quantum cosmology (“smooth bouncing”) for Friedmann-Robertson-Walker metric are presented and those for Bianchi I and IX models are mentioned.

Keywords


Integral quantization, covariance, POVM, affine group, Weyl-Heisenberg group, coherent states, FRW model, smooth bouncing

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague