ON GENERALIZATION OF SPECIAL FUNCTIONS RELATED TO WEYL GROUPS

Lenka Háková, Agnieszka Tereszkiewicz

Abstract


Weyl group orbit functions are defined in the context of Weyl groups of simple Lie algebras. They are multivariable complex functions possessing remarkable properties such as (anti)invariance with respect to the corresponding Weyl group, continuous and discrete orthogonality. A crucial tool in their definition are so-called sign homomorphisms, which coincide with one-dimensional irreducible representations. In this work we generalize the definition of orbit functions using characters of irreducible representations of higher dimensions. We describe their properties and give examples for Weyl groups of rank 2 and 3.

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague