Alena Olegovna Borduleva, Galina Alekseevna Bleykher, Dmitrii Vladimirovich Sidelev, Valeriy Pavlovich Krivobokov


This work focuses on erosion and thermal processes taking place on the surface of the titanium target in magnetron sputtering. The study was carried out using magnetron sputtering systems (MSS) with different thermal insulation target types from the magnetron body. It was found that the presence of an evaporation component allows the rate of removal of atoms from the surface of a solid target to be increased with limited thermal conduction. A mathematical simulation was used to evaluate the contribution of evaporation to the increase in the coating deposition rate for complete and partial thermal insulation. It was found that non-uniformity of the direct-axis component of the magnetic induction vector helps to localize the heating. also increases the evaporation rate on the surface of the target. It was proved that local evaporation including sublimations on the surface of a hot target is a significant factor in increasing the coating deposition rate. Due to this mechanism, the coating deposition rate can be increased 5 times for Ti in comparison with fully cooled targets. This result can be applied for direct current magnetrons and also for pulsed systems. It was also found that evaporation increased the energy efficiency of the target erosion. The most suitable metals were selected for obtaining high-intensity emission of atoms from a solid target.


magnetron sputtering; hot target; evaporation; high rate deposition.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague