ESTIMATION OF THE LATERAL AERODYNAMIC COEFFICIENTS FOR SKYWALKER X8 FLYING WING FROM REAL FLIGHT-TEST DATA

Rahman Mohammadi Farhadi, Vyacheslav Kortunov, Andrii Molchanov, Tatiana Solianyk

Abstract


Stability and control derivatives of Skywalker X8 flying wing from flight-test data are estimated by using the combination of the output error and least square methods in the presence of the wind. Data is collected from closed loop flight tests with a proportional-integral-derivative (PID) controller that caused data co-linearity problems for the identification of the unmanned aerial vehicle (UAV) dynamic system. The data co-linearity problem is solved with a biased estimation via priori information, parameter fixing and constrained optimization, which uses analytical values of aerodynamic parameters, the level of the identifiability and sensitivity of the measurement vector to the parameters. Estimated aerodynamic parameters are compared with the theoretically calculated coefficients of the UAV, moreover, the dynamic model is validated with additional flight-test data and small covariances of the estimated parameters.

Keywords


flight system identification; aerodynamic coefficient estimation; data co-linearity; least square method; output error method

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague