NEW APPROACH FOR ONLINE ARABIC MANUSCRIPT RECOGNITION BY DEEP BELIEF NETWORK

Benbakreti Samir, Aoued Boukelif

Abstract


In this paper, we present a neural approach for an unconstrained Arabic manuscript recognition using the online writing signal rather than images. First, we build the database which contains 2800 characters and 4800 words collected from 20 different handwritings. Thereafter, we will perform the pretreatment, feature extraction and classification phases, respectively. The use of a classical neural network methods has been beneficial for the character recognition, but revealed some limitations for the recognition rate of Arabic words. To remedy this, we used a deep learning through the Deep Belief Network (DBN) that resulted in a 97.08% success rate of recognition for Arabic words.

Keywords


manuscript, online recognition, neural networks, MLP, TDNN, RBF, deep learning, DBN.

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague