HEAT TRANSFER ENHANCEMENT AND FRICTION IN DOUBLE PIPE HEAT EXCHANGER WITH VARIOUS NUMBER OF LONGITUDINAL GROOVES

Authors

  • Putu Wijaya Sunu Bali State Polytechnic, Mechanical Engineering Department, Kampus Bukit Jimbaran, Jalan Uluwatu 45 Kuta Selatan, 80361 Badung, Bali, Indonesia https://orcid.org/0000-0002-6915-0475
  • Daud Simon Anakottapary Bali State Polytechnic, Mechanical Engineering Department, Kampus Bukit Jimbaran, Jalan Uluwatu 45 Kuta Selatan, 80361 Badung, Bali, Indonesia https://orcid.org/0000-0001-7856-6512
  • I Made Suarta Bali State Polytechnic, Mechanical Engineering Department, Kampus Bukit Jimbaran, Jalan Uluwatu 45 Kuta Selatan, 80361 Badung, Bali, Indonesia https://orcid.org/0000-0001-5715-7170
  • I Dewa Made Cipta Santosa Bali State Polytechnic, Mechanical Engineering Department, Kampus Bukit Jimbaran, Jalan Uluwatu 45 Kuta Selatan, 80361 Badung, Bali, Indonesia
  • Ketut Suarsana Udayana University, Faculty of Engineering, Mechanical Engineering Department, Kampus Sudirman, Jalan P.B. Sudirman, 80232 Denpasar, Bali, Indonesia

DOI:

https://doi.org/10.14311/AP.2020.60.0518

Keywords:

Heat transfer, heat exchanger, longitudinal grooves, friction

Abstract

It has been found out that heat exchangers with longitudinal grooves produce better heat transfer than those without longitudinal grooves. However, up to now, there have been few investigations and applications of longitudinal grooves in relation to heat transfer associated with friction from the annulus of a heat exchanger. The present investigation examined the effects of longitudinal grooves in a double pipe heat exchanger on the characteristics of heat transfer and friction. Longitudinal rectangular grooves were carved into the outer side of a tube at a specified depth (t) and width (l). The effect of the number of longitudinal grooves, Reynolds number (Re), on the thermal and hydraulic performance was evaluated based on the heat exchanger experimental data. A total of four pipes were used: one pipe with 2 grooves, one pipe with 4 grooves, one pipe with 6 grooves and one pipe with 8 grooves. Water, hot and cold, was used as the working fluid. The test was performed with the cold water as the working fluid, with the Reynolds number from about 33 000 to 46 000 in a counter-flow scheme. The result showed that the number of grooves improved the heat transfer and caused a pressure drop. The increase in heat transfer ranged from 1.05 to 1.15, and the pressure loss of the system reached almost 30% as compared with the smooth annulus, the annulus with no groove. The installation of longitudinal grooves in a heat exchanger system enhanced the process of the heat flow through the boundary but provided a compensation for the pressure loss, which was correlated with the friction and pumping power.

References

Y. Cao, H. Ke, Y. Lin, et al. Investigation on the flow noise propagation mechanism in pipelines of shell-andtube heat exchangers based on synergy principle of flow and sound fields. Applied Thermal Engineering 122:339 – 349, 2017. doi:10.1016/j.applthermaleng.2017.04.057.

H. Akhavan-Zanjani, M. Saffar-Avval, M. Mansourkiaei, et al. Experimental investigation of

laminar forced convective heat transfer of Graphene–water nanofluid inside a circular tube.

International Journal of Thermal Sciences 100:316 – 323, 2016. doi:10.1016/j.ijthermalsci.2015.10.003.

J. Opatril, J. Havlík, O. Bartoš, T. Douhý. An experimental assessment of the plate heat exchanger characteristics by Wilson plot method. Acta Polytechnica 56(5):367 – 372, 2016. doi:10.14311/AP.2016.56.0367.

D. Ndiaye. Transient model of a refrigerant-to-water helically coiled tube-in-tube heat exchanger with corrugated inner tube. Applied Thermal Engineering 112:413 – 423, 2017.

doi:10.1016/j.applthermaleng.2016.10.045.

L. Yang, H. Han, Y. Li, X. Li. A numerical study of the flow and heat transfer characteristics of outward convex corrugated tubes with twisted-tape insert. Journal of Heat Transfer 138(2):024501, 2016.

Y. Hong, J. Du, S. Wang. Experimental heat transfer and flow characteristics in a spiral grooved tube with overlapped large/small twin twisted tapes. International Journal of Heat and Mass Transfer 106:1178 1190, 2016. doi:10.1016/j.ijheatmasstransfer.2016.10.098.

N. Piriyarungrod, M. Kumar, C. Thianpong, et al. Intensification of thermo-hydraulic performance in heat exchanger tube inserted with multiple twisted-tapes. Applied Thermal Engineering 136:516 – 530, 2018. doi:10.1016/j.applthermaleng.2018.02.097.

S. Eiamsa-Ard, P. Promvonge. Thermal characteristics of turbulent rib-grooved channel flows. International Communications in Heat and Mass Transfer 36(7):705 – 711, 2009. doi:10.1016/j.icheatmasstransfer.2009.03.025.

P. Sunu, M. Rasta. Heat transfer enhancement and pressure drop of grooved annulus of double pipe heat exchanger. Acta Polytechnica 57(2):125 – 130, 2017. doi:10.14311/AP.2017.57.0125.

P. W. Sunu, I. N. G. Wardana, A. A. Sonief, N. Hamidi. The effect of wall groove numbers on

pressure drop in pipe flows. International Journal of Fluid Mechanics Research 42(2):119 – 130, 2015. doi:10.1615/InterJFluidMechRes.v42.i2.30.

K. Aroonrat, C. Jumpholkul, R. Leelaprachakul, et al. Heat transfer and single-phase flow in internally grooved tubes. International Communications in Heat and Mass Transfer 42:62 – 68, 2013. doi:10.1016/j.icheatmasstransfer.2012.12.001.

S. Huang. VIV suppression of a two-degree-offreedom circular cylinder and drag reduction of a fixed circular cylinder by the use of helical grooves. Journal of Fluids and Structures 27(7):1124 – 1133, 2011. doi:10.1016/j.jfluidstructs.2011.07.005.

S. Eiamsa-Ard, P. Promvonge. Numerical study on heat transfer of turbulent channel flow over periodic grooves. International Communications in Heat and Mass Transfer 35(7):844 – 852, 2008. doi:10.1016/j.icheatmasstransfer.2008.03.008.

P. Sunu, I. Wardana, A. Sonief, N. Hamidi. Flow behavior and friction factor in internally grooved pipe wall. Advanced Studies in Theoretical Physics 8(14):643 – 647, 2014. doi:10.12988/astp.2014.4573.

P. Sunu. The characteristics of increased pressure drop in pipes with grooved. Advanced Studies in Theoretical Physics 9(2):57 – 61, 2015. doi:10.12988/astp.2015.412152.

T. Adachi, Y. Tashiro, H. Arima, Y. Ikegami. Pressure drop characteristics of flow in a symmetric channel with periodically expanded grooves. Chemical Engineering Science 64(3):593 – 597, 2009. doi:10.1016/j.ces.2008.10.041.

Sutardi, C. Ching. Effect of a transverse square groove on a turbulent boundary layer. Experimental Thermal and Fluid Science 20(1):1 – 10, 1999. doi:10.1016/S0894-1777(99)00031-X.

S. Rainieri, G. Pagliarini (22):4525 – 4536, 2002.

C. ua Qi, X. Han, H. qing Lv, et al. Experimental study of heat transfer and scale formation of spiral grooved tube in the falling film distilled desalination. International Journal of Heat and Mass Transfer 119:654 – 664, 2018. doi:10.1016/j.ijheatmasstransfer.2017.11.148.

Y. Chen, J. Tian, Y. Fu, et al. Experimental study of heat transfer enhancement for molten salt with transversely grooved tube heat exchanger in laminar-transition-turbulent regimes. Applied Thermal Engineering 132:95 – 101, 2018. doi:10.1016/j.applthermaleng.2017.12.054.

J. Pan, Y. Bian, Y. Liu, et al. Characteristics of flow behavior and heat transfer in the grooved channel for pulsatile flow with a reverse flow. International Journal of Heat and Mass Transfer 147:118932, 2020. doi:10.1016/j.ijheatmasstransfer.2019.118932.

A. A. R. Darzi, M. Farhadi, K. Sedighi. Experimental investigation of convective heat transfer and friction factor of Al2O3/water nanofluid in helically corrugated tube. Experimental Thermal and Fluid Science 57:188 – 199, 2014. doi:10.1016/j.expthermflusci.2014.04.024.

P. Kathait, A. Patil. Thermo-hydraulic performance of a heat exchanger tube with discrete corrugations. Applied Thermal Engineering 66(1 - 2):162 – 170, 2014. doi:10.1016/j.applthermaleng.2014.01.069.

S. Lorenz, D. Mukomilow, W. Leiner. Distribution of the heat transfer coefficient in a channel with periodic transverse grooves. Experimental Thermal and Fluid Science 11(3):234 – 242, 1995. doi:10.1016/0894-1777(95)00055-Q.

T. Adachi, H. Uehara. Correlation between heat transfer and pressure drop in channels with periodically grooved parts. International Journal of Heat and Mass Transfer 44(22):4333 – 4343, 2001. doi:10.1016/S0017-9310(01)00070-9.

M. Jain, A. Rao, K. Nandakumar. Numerical study on shape optimization of groove micromixers. Microfluidics and Nanofluidics 15(5):689 – 699, 2013. doi:10.1007/s10404-013-1169-x.

C. Wang, Z. Liu, G. Zhang, M. Zhang. Experimental investigations of flat plate heat pipes with interlaced narrow grooves or channels as capillary structure. Experimental Thermal and Fluid Science 48:222 – 229, 2013. doi:10.1016/j.expthermflusci.2013.03.004.

Sunu, Putu Wijaya, Anakottapary, Daud Simon, Santika, Wayan G. Temperature approach optimization in the double pipe heat exchanger with groove. In The 3rd Bali International Seminar on Science & Technology (BISSTECH 2015), vol. 58, p. 04006. 2016. doi:10.1051/matecconf/20165804006.

M. C. Vlachou, C. Efstathiou, A. Antoniadis, T. D. Karapantsios. Micro-grooved surfaces to enhance flow boiling in a macro-channel. Experimental Thermal and Fluid Science 108:61 – 74, 2019. doi:10.1016/j.expthermflusci.2019.05.015.

A. Mehri, P. Akbarzadeh. Hydrodynamic characteristics of heated/non-heated and

grooved/un-grooved spheres during free-surface water entry. Journal of Fluids and Structures 97:103100, 2020. doi:10.1016/j.jfluidstructs.2020.103100.

P. Promvonge, P. Tongyote, S. Skullong. Thermal behaviors in heat exchanger channel with V-shaped ribs and grooves. Chemical Engineering Research and Design 150:263 – 273, 2019. doi:10.1016/j.cherd.2019.07.025.

R. Naveenkumar, N. Karthikeyan, S. Gopan, et al. Analysis of heat transfer in grooved plain carbon steel tube for solar applications. In International Conference on Nanotechnology: Ideas, Innovation and Industries, Materials Today: Proceedings, Part 7, vol. 33, pp. 4219 –

2020. doi:10.1016/j.matpr.2020.07.234.

S. K. Saha. Thermohydraulics of laminar flow of viscous oil through a circular tube having axial corrugations and fitted with centre-cleared twisted-tape. Experimental Thermal and Fluid Science 38:201 – 209, 2012. doi:10.1016/j.expthermflusci.2011.12.008.

S. K. Saha, B. Swain, G. L. Dayanidhi. Friction and thermal characteristics of laminar flow of viscous oil through a circular tube having axial corrugations and fitted with helical screw-tape inserts. Journal of Fluids Engineering, Transactions of the ASME 134(5):051210, 2012. doi:10.1115/1.4006669.

S. K. Saha. Thermohydraulics of turbulent flow through rectangular and square ducts with axial corrugation roughness and twisted-tapes with and without oblique teeth. Experimental Thermal and Fluid Science 34(6):744 – 752, 2010. doi:10.1016/j.expthermflusci.2010.01.003.

A. R. Anand. Analytical and experimental investigations on heat transport capability of axially grooved aluminium-methane heat pipe. International Journal of Thermal Sciences 139:269 – 281, 2019. doi:10.1016/j.ijthermalsci.2019.01.028.

A. R. Anand. Investigations on effect of evaporator length on heat transport of axially grooved ammonia heat pipe. Applied Thermal Engineering 150:1233 – 1242, 2019. doi:10.1016/j.applthermaleng.2019.01.078.

A. Bahmanabadi, M. Faegh, M. B. Shafii. Experimental examination of utilizing novel radially grooved surfaces in the evaporator of a thermosyphon heat pipe. Applied Thermal Engineering 169:114975, 2020. doi:10.1016/j.applthermaleng.2020.114975.

B. Zhou, X. Wang, W. Guo, et al. Experimental measurements of the drag force and the near-wake flow patterns of a longitudinally grooved cylinder. Journal of Wind Engineering and Industrial Aerodynamics 145:30 – 41, 2015. doi:10.1016/j.jweia.2015.05.013.

N. Fujisawa, K. Hirabayashi, T. Yamagata. Aerodynamic noise reduction of circular cylinder by longitudinal grooves. Journal of Wind Engineering and Industrial Aerodynamics 199:104129, 2020. doi:10.1016/j.jweia.2020.104129.

J. Han, Y. Zhang, W. Wang, et al. Effect of grooves on the double-nosed projectile penetrating into plain concrete target. International Journal of Impact Engineering 140:103544, 2020. doi:10.1016/j.ijimpeng.2020.103544.

S. W. Gepner, N. Yadav, J. Szumbarski. Secondary flows in a longitudinally grooved channel and enhancement of diffusive transport. International Journal of Heat and Mass Transfer 153:119523, 2020. doi:10.1016/j.ijheatmasstransfer.2020.119523.

R. J. Moffat. Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science 1(1):3 – 17, 1988. doi:10.1016/0894-1777(88)90043-X.

M. N. Ozisik. Heat Transfer: A Basic Approach. McGraw-Hill International Editions, New York, 1985.

W. M. Kays, A. L. London. Compact Heat Exchanger. McGraw-Hill International Editions, New York, 3rd edn., 1984.

Downloads

Published

2020-12-31

Issue

Section

Articles