NUMERICAL SIMULATION OF A SINGLE RING INFILTRATION EXPERIMENT WITH hp-ADAPTIVE SPACE-TIME DISCONTINUOUS GALERKIN METHOD

Authors

  • Vít Dolejší Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Prague, Czech Republic
  • Michal Kuráž Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Water Resources and Environmental Modeling, Kamýcká 129, 165 00 Prague, Czech Republic
  • Pavel Solin University of Nevada, College of Science, Department of Mathematics and Statistics, 1664 N Virginia St, NV 89557 Reno, USA

DOI:

https://doi.org/10.14311/AP.2021.61.0059

Keywords:

Richards equation, porous media flow, space-time discontinuous Galerkin method

Abstract

We present a novel hp-adaptive space-time discontinuous Galerkin (hp-STDG) method for the numerical solution of the nonstationary Richards equation equipped with Dirichlet, Neumann and seepage face boundary conditions. The hp-STDG method presented in this paper is a generalization of a hp-STDG method which was developed for time dependent non-linear convective-diffusive problems. We describe the method and the single ring experiment, and then we present a numerical experiment which clearly demonstrates the superiority of the hp-STDG method over a discontinuous Galerkin method based on a static fine mesh.

Downloads

Download data is not yet available.

References

X. Xu, C. Lewis, W. Liu, et al. Analysis of single-ring infiltrometer data for soil hydraulic properties estimation: Comparison of best and wu methods. Agricultural Water Management 107:34 – 41, 2012. doi:10.1016/j.agwat.2012.01.004.

M. Nakhaei, J. Šimunek. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the hydrus-2d code. Journal of Hydrology and Hydromechanics 62(1):7–15, 2014. doi:10.2478/johh-2014-0008.

L. A. Richards. Capillary conduction of liquids through porous mediums. Journal of Applied Physics 1(5):318–333, 1931. doi:10.1063/1.1745010.

S. C. Iden, J. R. Blöcher, E. Diamantopoulos, et al. Numerical test of the laboratory evaporation method using coupled water, vapor and heat flow modelling. Journal of Hydrology 570:574 – 583, 2019. doi:10.1016/j.jhydrol.2018.12.045.

A. Binley, K. Beven. Vadose zone flow model uncertainty as conditioned on geophysical data. Ground Water 41(2):119–127, 2003. doi:10.1111/j.1745-6584.2003.tb02576.x.

S. Würzer, N. Wever, R. Juras, et al. Modelling liquid water transport in snow under rain-on-snow conditions – considering preferential flow. Hydrology and Earth System Sciences 21(3):1741–1756, 2017. doi:10.5194/hess-21-1741-2017.

M. Kuraz, P. Mayer, V. Havlicek, et al. Dual permeability variably saturated flow and ontaminant transport modeling of a nuclear waste repository with capillary barrier protection. Applied Mathematics and Computation 219(13):7127 – 7138, 2013. ESCO 2010 Conference in Pilsen, June 21- 25, 2010, doi:10.1016/j.amc.2011.08.109.

H. Alt, S. Luckhaus. Quasilinear elliptic-parabolic differential equations. Mathematische Zeitschrift 183(3):311–341, 1983. doi:10.1007/BF01176474.

F. Otto. L1-contraction and uniqueness for quasilinear elliptic-parabolic equations. Journal of Differential Equations 131(1):20–38, 1996.

F. Otto. L1–contraction and uniqueness for unstationary saturated-unsaturated porous media flow. Adv Math Sci Appl 7(2):537–553, 1997.

L. Lam, D. Fredlund. Saturated-unsaturated transient finite element seepage model for geotechnical engineering. Advances in Water Resources 7(3):132 – 136, 1984. doi:10.1016/0309-1708(84)90042-3.

C. Kees, M. Farthing, C. Dawson. Locally conservative, stabilized finite element methods for variably saturated flow. Computer Methods in Applied Mechanics and Engineering 197(51):4610 – 4625, 2008. doi:10.1016/j.cma.2008.06.005.

J. Šembera, M. Beneš. Nonlinear Galerkin method for reaction-diffusion systems admitting invariant regions. Journal of Computational and Applied Mathematics 136(1):163 – 176, 2001. doi:10.1016/S0377-0427(00)00582-3.

P. Solin, M. Kuraz. Solving the nonstationary Richards equation with adaptive hp-FEM. Advances in Water Resources 34(9):1062 – 1081, 2011. New Computational Methods and Software Tools, doi:10.1016/j.advwatres.2011.04.020.

M. Tocci, C. Kelley, C. Miller. Accurate and economical solution of the pressure-head form of Richards’ equation by the method of lines. Advances in Water Resources 20(1):1 – 14, 1997. doi:10.1016/S0309-1708(96)00008-5.

C. Miller, C. Abhishek, M. Farthing. A spatially and temporally adaptive solution of Richards’ equation. Advances in Water Resources 29(4):525 – 545, 2006. doi:10.1016/j.advwatres.2005.06.008.

M. Kuraz, P. Mayer, V. Havlicek, P. Pech. Domain decomposition adaptivity for the Richards equation model. Computing 95(1):501–519, 2013. doi:10.1007/s00607-012-0279-8.

M. Kuraz, P. Mayer, P. Pech. Solving the nonlinear Richards equation model with adaptive domain decomposition. Journal of Computational and Applied Mathematics 270:2 – 11, 2014. Fourth International Conference on Finite Element Methods in Engineering and Sciences (FEMTEC 2013), doi:10.1016/j.cam.2014.03.010.

M. Kuraz, P. Mayer, P. Pech. Solving the nonlinear and nonstationary Richards equation with two-level adaptive domain decomposition (dd-adaptivity). Applied Mathematics and Computation 267:207 – 222, 2015. The Fourth European Seminar on Computing (ESCO 2014), doi:10.1016/j.amc.2015.03.130.

V. Dolejší, M. Kuráž, P. Solin. Adaptive higher-order space-time discontinuous galerkin method for the computer simulation of variably-saturated porous media flows. Applied Mathematical Modelling 72:276 – 305, 2019. doi:10.1016/j.apm.2019.02.037.

M. T. van Genuchten. Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44(5):892–898, 1980. doi:10.2136/sssaj1980.03615995004400050002x.

Y. Mualem. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research 12(3):513–522, 1976. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/WR012i003p00513. doi:10.1029/WR012i003p00513.

M. Kuraz, P. Mayer, M. Leps, D. Trpkosova. An adaptive time discretization of the classical and the dual porosity model of Richards’ equation. Journal of Computational and Applied Mathematics 233(12):3167 – 3177, 2010. Finite Element Methods in Engineering and Science (FEMTEC 2009), doi:10.1016/j.cam.2009.11.056.

V. Dolejší, M. Feistauer. Discontinuous Galerkin Method – Analysis and Applications to Compressible Flow. Springer Series in Computational Mathematics 48. Springer, Cham, 2015.

H. F. Walker, P. Ni. Anderson acceleration for fixed-point iterations. SIAM J Numer Anal 49(4):1715–1735, 2011. doi:10.1137/10078356X.

V. Dolejší. Anisotropic hp-adaptive method based on interpolation error estimates in the Lq-norm. Appl Numer Math 82:80–114, 2014. doi:10.1016/j.apnum.2014.03.003.

V. Dolejší. Anisotropic hp-adaptive method based on interpolation error estimates in the H1-seminorm. Appl Math 60(6):597–616, 2015. doi:10.1007/s10492-015-0113-7.

M. Kuraz, J. R. Bloecher. Hydrodynamic of porous media. CULS in Prague, 2017. Http://drutes.org/documents/notes.pdf.

J. Dusek, M. Dohnal, T. Vogel. Numerical analysis of ponded infiltration experiment under different experimental conditions. Soil and Water Research 4(SPECIAL ISSUE 2):22–27, 2009. doi:10.17221/1368-SWR.

Downloads

Published

2021-02-10

Issue

Section

Refereed Articles

How to Cite

Dolejší, V., Kuráž, M., & Solin, P. (2021). NUMERICAL SIMULATION OF A SINGLE RING INFILTRATION EXPERIMENT WITH hp-ADAPTIVE SPACE-TIME DISCONTINUOUS GALERKIN METHOD. Acta Polytechnica, 61(SI), 59-67. https://doi.org/10.14311/AP.2021.61.0059
Received 2019-12-24
Accepted 2020-03-26
Published 2021-02-10