CELL-CENTERED LAGRANGIAN LAX-WENDROFF HLL HYBRID SCHEME ON UNSTRUCTURED MESHES

Authors

  • David Fridrich Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Prague, Czech Republic
  • Richard Liska Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Prague, Czech Republic
  • Ivan Tarant Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Prague, Czech Republic
  • Pavel Váchal Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Prague, Czech Republic
  • Burton Wendroff Retired Fellow, Los Alamos National Laboratory, Los Alamos, NM, USA

DOI:

https://doi.org/10.14311/AP.2021.61.0068

Keywords:

Lagrangian hydrodynamics, Lax-Wendroff, HLL

Abstract

We have recently introduced a new cell-centered Lax-Wendroff HLL hybrid scheme for Lagrangian hydrodynamics [Fridrich et al. J. Comp. Phys. 326 (2016) 878-892] with results presented only on logical rectangular quadrilateral meshes. In this study we present an improved version on unstructured meshes, including uniform triangular and hexagonal meshes and non-uniform triangular and polygonal meshes. The performance of the scheme is verified on Noh and Sedov problems and its second-order convergence is verified on a smooth expansion test.
Finally the choice of the scalar parameter controlling the amount of added artificial dissipation is studied.

References

E. J. Caramana, D. E. Burton, M. J. Shashkov, P. P. Whalen. The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. Journal of Computational Physics 146(1):227–262, 1998. doi:10.1006/jcph.1998.6029.

E. J. Caramana, M. J. Shashkov, P. P. Whalen. Formulations of artificial viscosity for multi-dimensional shock wave computations. Journal of Computational Physics 144(1):70–97, 1998. doi:10.1006/jcph.1998.5989.

E. J. Caramana, M. J. Shashkov. Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian subzonal masses and pressures. Journal of Computational Physics 142(2):521–561, 1998. doi:10.1006/jcph.1998.5952.

J. vonNeumann, R. D. Richtmyer. A method for the numerical calculation of hydrodynamic shocks. Journal of Applied Physics 21(3):232–237, 1950. doi:10.1063/1.1699639.

V. A. Dobrev, Tz. V. Kolev, R. N. Rieben. High-order curvilinear finite element methods for Lagrangian hydrodynamics. SIAM Journal on Scientific Computing 34(5):B606–B641, 2012. doi:10.1137/120864672.

B. Després, C. Mazeran. Lagrangian gas dynamics in two dimensions and Lagrangian systems. Archive for Rational Mechanics and Analysis 178(3):327–372, 2005. doi:10.1007/s00205-005-0375-4.

P.-H. Maire, R. Abgrall, J. Breil, J. Ovadia. A cell-centered Lagrangian scheme for two-dimensional compressible flow problems. SIAM Journal on Scientific Computing 29(4):1781–1824, 2007. doi:10.1137/050633019.

P.-H. Maire. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes. Journal of Computational Physics 228(7):2391–2425, 2009. doi:10.1016/j.jcp.2008.12.007.

P.-H. Maire, B. Nkonga. Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics. Journal of Computational Physics 228(3):799–821, 2009. doi:10.1016/j.jcp.2008.10.012.

D. E. Burton, N. R. Morgan, T. C. Carney, M. A. Kenamond. Reduction of dissipation in Lagrange cellcentered hydrodynamics (CCH) through corner gradient reconstruction (CGR). Journal of Computational Physics 299:229–280, 2015. doi:10.1016/j.jcp.2015.06.041.

J. Cheng, C.-W. Shu. Positivity-preserving Lagrangian scheme for multi-material compressible flow. Journal of Computational Physics 257(A):143–168, 2014. doi:10.1016/j.jcp.2013.09.047.

W. Boscheri, M. Dumbser, R. Loubere, P.-H. Maire. A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics. Journal of Computational Physics 358:103–129, 2018. doi:10.1016/j.jcp.2017.12.040.

D. Fridrich, R. Liska, B. Wendroff. Some cell-centered Lagrangian Lax-Wendroff HLL hybrid schemes. Journal of Computational Physics 326:878–892, 2016. doi:10.1016/j.jcp.2016.09.022.

A. Harten, P. D. Lax, B. van Leer. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review 25(1):35–61, 1983. doi:10.1137/1025002.

R. Loubère, M. Shashkov. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods. Journal of Computational Physics 209(1):105–138, 2005. doi:10.1016/j.jcp.2005.03.019.

R. D. Richtmyer. A survey of difference methods for non-steady fluid dynamics. NCAR Technical Notes 63-2, National Center for Atmospheric Research, Boulder, Colorado, 1962. doi:10.5065/D67P8WCQ.

B. Wendroff, A. B. White. A supraconvergent scheme for nonlinear hyperbolic systems. Computers & Mathematics with Applications 18(8):761–767, 1989. doi:10.1016/0898-1221(89)90232-0.

J. Pouderoux, F. Chevassu, M. Kenamond, M. Shashkov. ShaPo - Recent advances on the Voronoi mesh generation toolkit. Presented at the 9-th International Conference on Numerical Methods for Multi-Material Fluid Flow (MULTIMAT 2019), Trento, Italy, September 9-13, 2019.

W. F. Noh. Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux. Journal of Computational Physics 72(1):78–120, 1987. doi:10.1016/0021-9991(87)90074-X.

L. I. Sedov. Similarity and Dimensional Methods in Mechanics. Academic Press, New York, 1959.

J. R. Kamm, F. X. Timmes. Cococubed. Sedov verification code. LA-CC-07-020, 2007. http: //cococubed.asu.edu/research_pages/sedov.shtml.

Downloads

Published

2021-02-10

Issue

Section

Refereed Articles