ARTIFICIAL NEURAL NETWORK APPROACH FOR THE IDENTIFICATION OF CLOVE BUDS ORIGIN BASED ON METABOLITES COMPOSITION
DOI:
https://doi.org/10.14311/AP.2020.60.0440Keywords:
artificial neural networks, backpropagation, resilient propagation, clove budsAbstract
This paper examines the use of an artificial neural network approach in identifying the origin of clove buds based on metabolites composition. Generally, large data sets are critical for an accurate identification. Machine learning with large data sets lead to a precise identification based on origins. However, clove buds uses small data sets due to the lack of metabolites composition and their high cost of extraction. The results show that backpropagation and resilient propagation with one and two hidden layers identifies the clove buds origin accurately. The backpropagation with one hidden layer offers 99.91% and 99.47% for training and testing data sets, respectively. The resilient propagation with two hidden layers offers 99.96% and 97.89% accuracy for training and testing data sets, respectively.
Downloads
References
L. Broto. Derivatisasi minyak cengkeh, dalam cengkeh: Sejarah, budidaya dan industri 2014 (in Indonesian).
Coffeeland 2010. Jenis kopi arabika terbaik dari berbagai daerah di indonesia (in indonesian). https://coffeeland.co.id/product-category/kopi-supply/.
M. T. A. P. Kresnowati, R. Purwadi, M. Zunita, et al.Metabolite profiling of four origins indonesian clove buds using multivariate analysis. Report Research Collaboration PT HM Sampoerna Tbk and Institut Teknologi Bandung (confidential report) 2018.
J. Kopka, A. Fernie, W. Weckwerth, et al. Metabolite profiling in plant biology: platforms and destinations. Genome biology 5(6):109, 2004.
S. P. Putri, E. Fukusaki. Mass spectrometry-based metabolomics: a practical guide. CRC Press, 2016.
D. L. Massart, B. Vandeginste, S. Deming, et al. Chemometrics: a textbook 1988.
T. Cornelius. Leondes: Image processing and pattern recognition, 1998.
B. Samir, A. Boukelif. New approach for online arabic manuscript recognition by deep belief network. Acta Polytechnica 58(5), 2018.
A. N. Ponce, A. A. Behar, A. O. Hernández, V. R. Sitar. Neural networks for self-tuning control systems. Acta Polytechnica 44(1), 2004.
M. Chvalina. Demand modelling in telecommunications comparison of standard statistical methods and approaches based upon artificial intelligence methods including neural networks. Acta Polytechnica 49(2):48–52, 2009.
I. Bukovsky, M. Kolovratnik. A neural network model for predicting nox at the melnik 1 coal-powder power plant. Acta Polytechnica 52(3):17–22, 2012.
P. Kutilek, S. Viteckova. Prediction of lower extremity movement by cyclograms. Acta Polytechnica 52(1), 2012.
D. Novák, D. Lehk`y. Neural network based identification of material model parameters to capture experimental load-deflection curve. Acta Polytechnica 44(5-6), 2004.
Rustam, A. Y. Gunawan, M. T. A. P. Kresnowati. The hard c-means algorithm for clustering indonesian plantation commodity based on metabolites composition. In Journal of Physics: Conference Series,
vol. 1315, p. 012085. IOP Publishing, 2019.
T. Beltramo, M. Klocke, B. Hitzmann. Prediction of the biogas production using ga and aco input features selection method for ann model. Information Processing in Agriculture 2019.
L. Fausett. Fundamentals of neural networks: architectures, algorithms, and applications. Prentice-Hall, Inc., 1994.
I. Aizenberg, C. Moraga. Multilayer feedforward neural network based on multi-valued neurons (mlmvn) and a backpropagation learning algorithm. Soft Computing 11(2):169–183, 2007.
E. M. Johansson, F. U. Dowla, D. M. Goodman. Backpropagation learning for multilayer feed-forward neural networks using the conjugate gradient method. International Journal of Neural Systems 2(04):291–301, 1991.
T. T. Pleune, O. K. Chopra. Using artificial neural networks to predict the fatigue life of carbon and low-alloy steels. Nuclear Engineering and Design 197(1-2):1–12, 2000.
K. L. Kaiser, S. P. Niculescu, G. Schüürmann. Feed forward backpropagation neural networks and their use in predicting the acute toxicity of chemicals to the fathead minnow. Water Quality Research Journal 32(3):637–658, 1997.
E. El Tabach, L. Adishirinli, N. Gascoin, G. Fau. Prediction of transient chemistry effect during fuel pyrolysis on the pressure drop through porous material using artificial neural networks. Journal of analytical and applied pyrolysis 115:143–148, 2015.
R. Chayjan, M. ESNA-ASHARI. Isosteric heat and entropy modeling of pistachio cultivars using neural network approach. Journal of Food Processing and Preservation 35(4):524–532, 2011.
A. D. Anastasiadis, G. D. Magoulas, M. N. Vrahatis. New globally convergent training scheme based on the resilient propagation algorithm. Neurocomputing 64:253–270, 2005.
A. K. Santra, N. Chakraborty, S. Sen. Prediction of heat transfer due to presence of copper–water nanofluid using resilient-propagation neural network. International Journal of Thermal Sciences 48(7):1311–1318, 2009.
L. M. Patnaik, K. Rajan. Target detection through image processing and resilient propagation algorithms. Neurocomputing 35(1-4):123–135, 2000.
D. Fisch, B. Sick. Training of radial basis function classifiers with resilient propagation and variational bayesian inference. In 2009 International Joint Conference on Neural Networks, pp. 838–847. IEEE,
M. Shiblee, B. Chandra, P. K. Kalra. Learning of geometric mean neuron model using resilient propagation algorithm. Expert Systems with Applications 37(12):7449–7455, 2010.
M. Riedmiller, H. Braun. A direct adaptive method for faster backpropagation learning: The rprop algorithm. In Proceedings of the IEEE international conference on neural networks, vol. 1993, pp. 586–591. San Francisco, 1993.
P. Bhagat. Pattern recognition in industry. Elsevier, 2005.
Downloads
Published
Issue
Section
How to Cite
Accepted 2020-08-10
Published 2020-11-02